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Abstract

High-resolution images, now a common standard, presents challenges for exist-
ing segmentation approaches due to increased computational and memory require-
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Chapter 1

Introduction

1.1 Problem description

Semantic segmentation - the process of image pixels classification based on their se-
mantic information. In role of semantic information can be affiliation to a specific
object, such as a cat, table, etc. Image segmentation can be separated into two cate-
gories; Semantic segmentation - pixels classification based on affiliation to a specific
semantic class, and instance segmentation - pixels classification based on their se-
mantics and association to the particular object.

In contrast to object detection using bounding boxes, segmentation techniques
must generate accurate object boundaries. A detailed understanding of all object
parts is essential. Predictions should be based not only on global but also local in-
formation to produce precise boundaries

Modern cameras now commonly capture 4K and even 8K images, making high-
resolution images the new standard. Higher image resolutions enable the recording
of greater details, which is crucial for various post-processing tasks, such as object
removal, industrial defect detection, and more. However, existing segmentation ap-
proaches often struggle to directly handle these large-scale images while maintain-
ing accuracy. Processing high-resolution images requires more computational re-
sources and memory, which pose challenges for many segmentation methods. Fur-
thermore, as most publicly available datasets consist of images with resolutions be-
low 1K pixels, training segmentation models on high-resolution data using open
datasets becomes difficult in many cases. Straightforward approaches to managing
high-resolution images include downsampling and cropping. Nonetheless, down-
sampling can lead to the loss of details, while cropping may remove crucial context
from the image.

1.2 Contribution

In recent years, several approaches have been proposed for high-quality segmenta-
tion of high-resolution images. The primary concept behind these methods is to first
perform segmentation on a lower-resolution version of the image, followed by the
application of a class-agnostic refinement step to enhance the mask.

This study examines high-resolution image segmentation methods and suggests
improvements for memory, processing time and accuracy. Work includes:

• Evaluation of existing methods: Reviewing current techniques by comparing
performance, memory, and processing speed to find ways to improve.

• Memory and processing optimizations: Suggesting changes based on the eval-
uation, using memory usage flattening and region of interest inference
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• New refinement approach: Introducing a mask refinement technique based on
near foundational vision model SAM

• Validation and benchmarking: Testing our improvements and proposed re-
finement method and comparing them with leading methods.
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Chapter 2

Related Works

2.1 Segmentation methods

Classical image segmentation techniques typically provide rapid processing and
good interpretability, making them suitable for use in controlled environments with
low variability. They generally perform well when objects are clearly visible, exhibit
simple shapes, possess distinct colors, and occupy fixed positions. However, in cases
involving noise, varying object positions and poses, complex semantics, and other
factors, classical approaches may not be applicable or effective

Fully connected neural networks (NNs) were initially employed for object de-
tection tasks; however, their lack of spatial understanding of images led to their re-
placement by convolutional neural networks (CNNs). At present, CNNs are consid-
ered the standard for segmentation. They pose hierarchical feature learning, spatial
awareness, parameter sharing, reduced complexity compared to MLP, translation in-
variance. Later work includes PSP-Net [Hengshuang Zhao and Jia, 2017], DeepLab
[Liang-Chieh Chen and Adam, 2018] series methods, and other works

In all these methods, the output mask is predicted on resolution downsampled
by 4 or 8 times and then bilinearly upscaled to match the final resolution. This ap-
proach serves to decrease memory usage and processing time, but it comes at the
cost of reduced accuracy for the predicted masks. The downscaling and upscaling
processes can lead to the loss of finer details and less precise object boundaries in
the final segmentation output.

FIGURE 2.1: Training strategy of Patch-Based Segmentation

Also, patch based segmentation can be used for handling memory usage con-
straints, by reducing peak memory usage. During training, the input image is re-
sized to the target scale and randomly cropped to fit the neural network’s input
size. During inference, images are divided into patches, processed separately, and
then merged to create the final prediction mask. This approach provides a basis for
handling high-resolution images, but the loss of context and potential increase in
inference time highlight the need for alternative solutions.
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FIGURE 2.2: Inference strategy of Patch-Based Segmentation

The recently proposed LGNet (Wuyang Chen, 2021) combines both local and
global context to improve segmentation results. The "L" in the name represents local,
while the "G" stands for global context. This method integrates cropped images for
local precision and resized images for global context. While the approach enhances
outcomes, it still necessitates the use of high-resolution data.

2.2 Segmentation refinement

To deal with the issue of wrong boundary pixels of things in images, different ideas
have been suggested. These ideas can be split into two main groups.

The first group can only make small changes to the existing boundaries based on
the very close surrounding area. At first, this might seem like enough if you think
we just need to fine-tune the boundaries. But, when an image that was split up on
a small scale (like 512x512) is then upscaled up to 6k, making small changes to the
existing boundaries doesn’t really work. Tiny parts of things that you couldn’t see at
512x512 become easy to see at 6k, and to include these parts in the original split-up
image, looking at the very close surrounding area isn’t enough.

Because of these issues, a second group of ideas were suggested. These ideas look
at the larger surrounding area and can make changes to bigger parts of the image. By
looking at more of the image, these ideas are better at dealing with problems when
the boundary pixels of things in the image are wrong, especially when the image is
upscaled dramatically

2.2.1 Local segmentation refinement

The SegFix (Yuhui Yuan, 2020) approach serves as an example of local mask refine-
ment in image segmentation. The process it employs for mask refinement involves a
couple of key steps: (1) identifying the boundary pixels of the segmented object and
(2) determining the corresponding interior pixel for each identified boundary pixel.

Firstly, an image encoder is utilized to extract features for each pixel in the image.
Simple backbones such as ResNet50 (Kaiming He, 2015) and EfficientNetB0 (Mingx-
ing Tan, 2020) are often employed for this purpose, particularly for encoding images
of nearly 4K resolution in a single pass. These encoders are selected to ensure the
process fits within the time and memory constraints.

Subsequently, two branches are employed. The first branch is tasked with de-
tecting pixels located on the object’s edges. The second branch, on the other hand,
is responsible for predicting offsets for the edge pixels. The authors of the SegFix
method posit that interior pixels are generally more robust compared to boundary
pixels. Therefore, for each boundary pixel, an interior pixel is assigned using the
predicted offsets.
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FIGURE 2.3: Illustrating the SegFix framework. Figure from the orig-
inal paper

During the model training phase, the model is trained to segment edges and
predict offsets. In the inference phase, the predicted offsets are utilized to reassign
classes on the predicted masks, thereby refining them.

One important downside of this method is that it doesn’t use information from
the predicted masks. This makes it much harder to find the edges of the object that
need to be improved. Figuring out the direction of the offset, or the amount the
object needs to be shifted, also becomes more challenging.

Another key point is that this method needs high-resolution data to learn from.
Usually, this method is trained on images that are nearly 1K in size, and then it’s
used on bigger images. However, this transfer from smaller to larger images isn’t as
efficient when compared to newer methods.

2.2.2 Global segmentation refinement

Global refinement methods, by taking into account the overall context of an image,
can achieve more accurate refinements when the image has undergone significant
resizing. This attribute is particularly crucial when there exists a considerable dis-
parity between the segmentation scale and the original image scale, for instance,
when the gap is over five times greater.

CascadePSP [Kei Cheng and Tang, 2020]

In 2020, the CascadePSP method was introduced as a solution for refining image
masks using both global and local contexts. Notably, this method does not necessi-
tate high-resolution data for training, owing to its efficient generalization capabilities
to scales beyond the training distribution.

A crucial component of this technique is the refinement module, which com-
prises an encoder and a decoder. It bears some resemblance to the UNet architecture,
but before the decoder, it fuses information from all encoder scales while preserving
the original skip connections.

The refinement process consists of two steps. First, the global refinement step
refines larger parts of masks based on the global context. Three refinement mod-
ules are employed for this purpose, working together to use skip connections from
previous modules while refining features across different scales simultaneously.

Next, local mask refinement is applied following the global refinement step. Its
objective is to refine masks using high-resolution local information. The image is
divided into patches of a specific size, "L", which are processed individually. The
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FIGURE 2.4: Illustrating the CascadePSP refinement module. Figure
from the original paper

local refiner’s architecture is similar to that of the global refiner, but it uses only two
refinement modules instead of three.

During training, a single refinement module is utilized, with the learned weights
shared among all other refinement modules during the inference stage. By sepa-
rating the process into global and local steps, CascadePSP refines masks more effi-
ciently than previous approaches.

CRM [Tiancheng Shen, 2021]

In 2021, an current SOTA approach inspired by LIIF (Yinbo Chen, 2021) was intro-
duced. LIIF (Learning Implicit Image Functions) is utilized for continuous image
representation, which enables flexible scaling of images. Initially, an image is en-
coded into a continuous representation using an encoder, which can then be decoded
to any desired scale. The main advantage of LIIF lies in its capacity to upscale im-
ages to significantly larger scales than those encountered during the training phase.
For example, in the LIIF paper, the model was trained to upscale images between
2-6 times their original size; however, during inference, it was capable of upscaling
images by up to 30 times while still preserving acceptable image quality.

Assuming that high-resolution images are not available during training, LIIF’s
ability to work outside the training distribution becomes highly beneficial. In the
paper "High-Quality Segmentation for Ultra High-Resolution Images," the authors
utilize this property for the refinement task. They replace the original LIIF encoder
with a more lightweight ResNet50 and incorporate other ideas from LIIF.

Each pixel is individually decoded based on the image and mask embeddings,
while the original LIIF uses only image embeddings for super-resolution of the im-
age. CRM utilizes not only the information encapsulated in the features, but also
additional metadata concerning the pixel’s position relative to these features.

The model is then trained to refine masks. During inference, a cascade strategy is
employed to refine both global and local details of the mask, allowing for improved
segmentation results even in the absence of high-resolution training data

2.2.3 CRM edge cases

In the analysis of the top-performing approaches for refining semantic segmentation
masks, as proposed in the "High Quality Segmentation for Ultra High-resolution
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FIGURE 2.5: Illustrating the CRM refinement module training and
inference. Figure from the original paper

Images" paper, it has been discovered that current models often struggle with un-
derstanding context. The leading model, CRM, utilizes ResNet50 as its only encoder
to address memory limitations. However, this does not provide enough context un-
derstanding, as shown in Figure 2.4.

CRM primarily depends on color and pattern similarities. For instance, the front
glass of a motorcycle is missed due to its resemblance to the background. Addition-
ally, the inner part of a cow is incorrectly segmented due to the sudden color change
from brown to white. When objects have initially poor edge quality, the model faces
difficulties in accurately reconstructing elements like bottles.

The primary objective of this work is to enhance the deep contextual understand-
ing of the mask refinement model. Through the experiments conducted in the sub-
sequent section, it is demonstrated that the proposed approach effectively improves
the behavior of the refiner across all tested scenarios.
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FIGURE 2.6: CRM edge cases visualization
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Chapter 3

Method

3.1 CRM compression and acceleration

3.1.1 Memory

CRM is currently the most efficient approach regarding memory usage and inference
speed, but it still uses many resources. In this section memory usage optimization
approach is proposed. In most cases, NNs do not use memory uniformly, and there
is always room for improvement. After profiling the CRM module, were noticed that
there is a present memory usage spike which increases the memory requirement for
the system by 1.5 times. During the features fusion from different scales, all features
are interpolated to the largest scale spatial size and passed to convolution layers,
which fuse them before the decoder. This operation requires a lot of memory if we
try to fuse it all at once. But if split convolution into a few separate convolution
operations on features patches and after predictions are merged into one features
map, the peak memory usage can be reduced a lot.

3.1.2 Speed

Proposed Inference time optimizations use the fact that often most of the pixels on
the mask are left the same after refinement, and there is no need to run a decoder
for all of them. The straightforward optimization approach runs only on padded
bounding boxes of objects on the mask. This optimization helps in cases when the
object is small, but when the mask covers most of the image, then there will be no
boost in speed.

The second optimization approach runs the decoder only on pixels near the
rough mask’s contours. The idea is that pixels far from contours will not be modi-
fied.

The last approach initially runs the decoder only on every nth pixel and decodes
all other pixels. If the nearest four pixels are decoded with the same value, then
this pixel preserves its value. If at least one of the nearest initially decoded pixels
changes its value, it is also decoded by the refiner.

3.2 Segment Anything Model [Alexander Kirillov, 2023]

It’s been observed that current mask refinement approaches have difficulty with con-
textual interpretation. They generally depend on basic patterns and similar colors,
failing to deeply integrate context information into the image’s description.

Recently, a novel model called the "Segment Anything Model" (SAM) was in-
troduced, aimed at prompt-based segmentation. What makes SAM notable is its
ambition to become a foundational model in the realm of image understanding. To
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FIGURE 3.1: SAM pipeline

realize this, the model was trained on a dataset of 11 billion images. These images
cover a wide range of areas, making the dataset diverse and comprehensive. It’s
important to note that the data represents one of the two critical components of a
generic segmentation model. The team behind SAM has pushed the limits of exist-
ing dataset sizes in terms of image quantity and diversity.

SAM’s architecture is built on two core parts Fig.3.1: the Vision Transformer (ViT
Alexey Dosovitskiy, 2021) encoder and lightweight dencoder. Initially, images are re-
sized to 1024x1024 pixels. Then, a 16x16 convolution is used to derive 1024 generic
patterns from the entire image. The ViT encoder is then applied, which groups fea-
ture vectors with similar meanings to vectors with high similarity.

After the encoding process, masks can be pulled out using prompts with the
assistance of the simple encoder. This encoder includes two transformer blocks that
attends the features and prompts in both directions, a transposed convolution on the
features, and a dot product operation with the prompts to generate the final mask.

SAM does not have specific domain restrictions, making it potentially valuable
for improving the contextual understanding of current refinement methods. This
study suggests various ways to incorporate SAM into the existing CRM pipeline.

3.3 SAM-guided Segmentation Refinement (SAM-SR)

This work proposes three conceptually different approaches to SAM integration
with existing SOTA mask refiner CRM. They can be split by the level of integra-
tion between two pipelines. The first type of integration proposes IoU baed integra-
tion, where two pipelines runs sequentially, but without any complex integration
between them. The second approach still runs SAM and CRM sequentially, but here
CRM is trained to use SAM output as additional input. The last approach proposes
four ways for SAM ViT encoder usage in CRM pipeline.

3.3.1 IoU based SAM-SR (SAM-SR-v1)

The IoU-based approach uses a uniform grid of points as prompts Fig3.2. Each point
corresponds to a separate point and produces three masks. Three is a determined
number of masks from SAM, corresponding to different semantic similarity thresh-
olds. After NMS is applied to all masks to merge similar masks. In the result SAM
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FIGURE 3.2: SAM-SR-v1 pipeline

itself produces set of masks P1, P2, ...Pn in average n is equal to 900. After that, pro-
duced masks are overlapped with masks that should be refined. If the SAM mask is
covered enough with the input mask, then it is preserved, else it’s dropped. All pre-
served masks are merged into one and passed to CRM instead of the original input
mask.

Experiments reveal that SAM struggles with segmenting sparse objects like bi-
cycles and produces for them solid masks that ignore holes in objects, which dra-
matically degrades refinement quality. To handle this initial mask is analyzed on the
sparsity coefficient, and if it’s space enough, then the SAM step is skipped.

Also, sometimes SAM doesn’t have suitable masks to cover the input mask per-
fectly; in such cases deformation coefficient after the SAM, step is analyzed. If it is
too big, then the SAM step is also skipped.

This approach aims to validate SAM masks quality and determine weather they
can be used for masks refinement.

3.3.2 Semi-integrated SAM-SR (SAM-SR-v2)

The second group of SAM integration approaches focuses on using SAM output as
additional input to the CRM module. The main idea is to provide CRM preprocessed
semantic information in a simple form to improve refinement quality.

SAM-SR-v2.1

SAM-SR-v2.1 Fig 3.3, in terms of prompts to SAM, works like SAM-SR-v1, but in the
end, masks are sorted by area and merged to RGB with random colors assigned to
each mask. Predicted RGB images with simplified semantics are used as additional
input to CRM.
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FIGURE 3.3: SAM-SR-v2.1 pipeline

Even though SAM works with images of size 1024x1024, it still can be utilized
for ultra-high resolution mask refinement. After the visualization of the SAM out-
put, gaps between masks can be noticed. This gaps highlights unconfident regions
which, after, can be refined by CRM. In this case, SAM works like a context simplifier
and edge detector at once.

SAM-SR-v2.2

SAM-SR-v2.2 (Fig 3.4) tries to employ SAM for potentially more precise mask pre-
diction based on prompt points sampled from the initial mask. The idea is to vali-
date SAM’s ability to resegment rough masks with higher quality. For prompts, the
points grid is sampled from a rough mask. After points are grouped in sets of three
points, each set predicts the mask and confidence score for this mask. To prepare
additional input for the CRM module, masks are merged based on confidence score.
The IoU-based approach uses SAM masks instead of the initial rough mask, while
SAM-SR-v2.2 provides the initial mask and mask after SAM refinement to the CRM
module. Such an approach provides additional flexibility in terms of work with
SAM.

3.3.3 SAM encoder (SAM-SR-v3)

As experiments showed, the previous approaches improved accuracy, leading to the
decision to integrate the encoder into the CRM module. This integration aims to
simplify the pipeline and incorporate mask information more flexibly. In SAM-SR-
v1 and SAM-SR-v2, features from the encoder are transformed into simple images
on output. During this process, a lot of deep semantic information is lost. SAM-SR-
v3 (Fig 3.5) proposes using ViT features directly.
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FIGURE 3.4: SAM-SR-v2.2 pipeline

FIGURE 3.5: SAM-SR-v3 pipeline

SAM encoder utilizes 16x16 convolutions initially, resulting in the significant loss
of local information crucial for precise boundary refinement. To handle the loss of
high-level local semantic information shallow features encoder is used in pair with
the SAM encoder. The shallow features encoder is designed to preserve local infor-
mation, while the SAM encoder provides robust contextual information.

To incorporate mask information into ViT features, different approaches are pro-
posed. CNN-based approach encodes mask to ViT domain features and directly
adds mask information over ViT features. Transformer-based methods also use
CNN encoder for the mask. After, the transformer block assigns a weighted sum
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of mask feature vectors for each image feature vector. Weights are calculated based
on the correlation between the current and other image-embedding vectors. The
idea is to refine mask features using semantic similarity of image embeddings. After
refinement, maks embeddings also are added over to image embeddings.

SAM-SR-V3.1 uses only ViT features without integration of any masks informa-
tion. SAM-SR-V3.2 uses ViT features with integration of mask features by mask
embedding addition. SAM-SR-V3.3 uses ViT features without with integration of
mask features through multi-headed global attention block. SAM-SR-V3.4 uses ViT
features without with integration of mask features through multi-head windowed
attention block.

Before the decoder, features from deep and shallow encoders are processed through
CNN features fuser. As in CRM, MLP pixel-wise decoder is used to decode refined
mask.
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Chapter 4

Experiments

4.1 Patch-based segmentation

FIGURE 4.1: Illustrating patch-based approach results
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Name Peak memory usage (GiB) Avg inference time (sec) IoU/mBA

Original 23.8 8.97 94.18/76.09
Optimized 16.25 9.10 94.18/76.05

TABLE 4.1: Memory usage optimization. Avg inference time is calcu-
lated on test set of BIG dataset.

The primary objective of this experiment was to demonstrate the limitations of
the straightforward patch-based approach in segmenting high-resolution images.
The popular segmentation framework PSPNet was chosen for its proven effective-
ness across a variety of segmentation domains. To enhance the model’s data-fitting
capabilities, ResNet101, the largest backbone in the ResNet family, was employed as
the encoder.

PASCAL Visual Object Classes (PASCAL VOC) dataset was used for training,
while the BIG dataset, selected for evaluation, due to its domain similarity with PAS-
CAL VOC and its inclusion of very high-resolution images and masks. The original
training methodology provided by the authors of PSPNet was followed. The only
difference is the an increase in the number of epochs to account for the slower con-
vergence rate of the model. Images from the training dataset were upscaled to sizes
between 2k and 6k and subsequently cropped to 512x512 resolution. The experiment
aimed to train the model to segment patches of 2k-6k images.

A notable observation was the increase in convergence time from the 8-hour es-
timate provided by the PSPNet authors for the original scale to 4 days for the crops.
This can be attributed to the fact that patches often lacked sufficient information for
accurate object class identification.

As the results indicate (Fig. 4.1), correct predictions were made when patches
contained unique object details, but incorrect classifications occurred for inner parts
of objects that lacked any useful information. This experiment reveals that the patch-
based segmentation approach is not suitable for segmenting very high-resolution
images.

4.2 CRM compression and acceleration

Memory usage. As experiments show (Tab. 4.1), patched convolution approach al-
lows for a decrease in memory usage significantly while almost preserving inference
time.

Inference time. Inference time is calculated on a test set of BIG dataset. The size
of images is near uniformly distributed between 2k and 6k. Metrics are measured on
PSPNet output refinement. Table 4.2 shows inference time optimization experiments
results.

For box-based optimization precision lefts near the original but slightly lower.
That is because the box limits mask refinement ranges, and sometimes this range is
not sufficient to reproduce the original refinement effect.

Contour-based optimization speeds up inference better while adding more con-
straints on refinement flexibility and leading to a more significant drop in metrics,
but they still are near the original.

Stride-based approach does not introduce any constraints on the refinement re-
gion and preserves metrics nearly the same while decreasing inference time more
than two times. Different stride sizes were tested (Tab. 4.2).
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Name Avg inference time (sec) IoU/mBA

Original 8.97 94.18/76.09
BBox 5.62 94.17/75.79
Contour 4.56 93.86/75.35
Strided 2 5.02 94.15/76.06
Strided 4 3.97 94.14/75.85
Strided 8 3.72 93.95/74.73

TABLE 4.2: Inference time optimization.

The best shows strided inference with stride size four. It decreases inference two
times while practically preserving refinement quality.

4.3 SAM-guided Segmentation Refinement (SAM-SR)

4.3.1 Training details

In the training phase, the original procedure established by the CRM was used. The
model was trained using various data sources to ensure a comprehensive training
set. Specifically, we used four datasets - MSRA-10K (detection, 2014), DUT-OMRON,
EC-SSD, and FSS-1000.

These individual datasets were brought together to create a large and diverse
training set. The combined training set consists of 36,572 images with diverse se-
mantic classes (>1,000 classes).

4.3.2 Evaluation details

Dataset. For the evaluation BIG dataset was used. Currently, it’s standard for the
evaluation of refinement methods. It contains images from 2k to 6k with very precise
masks. Rough masks are produced by FCN-8s (Jonathan Long and Darre, 2015),
DeepLabV3+ (Liang-Chieh Chen and Adam, 2018), RefineNet (Guosheng Lin and
Reid, 2017), and PSPNet (Hengshuang Zhao and Jia, 2017) segmentation methods
trained on PASCAL VOC.

Metrics. Two metrics for evaluation are used. The first one is intersection over
union (IoU).

IoU =
area of overlap
area of union

This metric focuses in general mask quality and calculates ration between inter-
section of predicted mask and gt mask to the union of this masks. The second metric
is mean boundary accuracy (mBA) is used to evaluate the precision of object bound-
ary predictions. This metric calculates IoU of fround truth and predicted masks on
their boundaries with different dilation intensity of contours and calculating average
between all intensities.

4.3.3 Results analysis

SAM-SR-v1 and SAM-SR-v2.1 show a huge improvement in metrics compared to the
original CRM. Original CRM often incorrectly removes or adds significant regions
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IoU/mBA Coarse Mask Original CRM SAM-SR-v1

FCN-8s 72.39/53.63 79.62/69.47 79.71/70.07
DeepLabV3+ 89.42/60.25 91.84/74.96 93.00/76.69
RefineNet 90.20/62.03 92.89/75.50 93.55/76.93
PSPNet 90.49/59.63 94.18/76.09 94.45/77.17

Avg. Improve. 0.00/0.00 4.01/15.12 4.55/16.33

TABLE 4.3: SAM-SR-v1 metrics

IoU/mBA Coarse Mask Original CRM SAM-SR-v2.1 SAM-SR-v2.2

FCN-8s 72.39/53.63 79.62/69.47 79.92/70.44 76.19/70.13
DeepLabV3+ 89.42/60.25 91.84/74.96 93.04/76.30 87.89/74.87
RefineNet 90.20/62.03 92.89/75.50 93.71/76.35 88.15/74.93
PSPNet 90.49/59.63 94.18/76.09 95.09/76.98 89.55/75.65

Avg. Improve. 0.00/0.00 4.01/15.12 4.82/16.13 -0.18/15.01

TABLE 4.4: SAM-SR-v2 metrics.

IoU/mBA Coarse Mask Original CRM SAM-SR-v3.1 SAM-SR-v3.2 SAM-SR-v3.3 SAM-SR-v3.4

FCN-8s 72.39/53.63 79.62/69.47 79.70/69.61 80.64/69.78 79.74/69.21 79.79/69.12
DeepLabV3+ 89.42/60.25 91.84/74.96 91.88/75.05 92.33/75.00 91.95/74.67 91.57/74.73
RefineNet 90.20/62.03 92.89/75.50 92.93/75.61 92.81/75.23 92.96/75.39 92.77/75.32
PSPNet 90.49/59.63 94.18/76.09 94.18/76.25 93.73/75.82 94.23/75.92 93.90/75.82

Avg. Improve. 0.00/0.00 4.01/15.12 4.05/15.25 4.25/15.14 4.1/14.91 3.88/14.87

TABLE 4.5: SAM-SR-v3 metrics.
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FIGURE 4.2: Illustrating SAM-SR-v2.1 improvement

and harms precision. These methods help to stabilize refiner behavior due to bet-
ter context understanding provided by SAM. Figures 4.2 and 4.3 show examples of
when SAM-SR-v2.1 stabilizes and produces more accurate masks after refinement.

SAM-SR-v2.2 showed that by itself, SAM is not enough to refine masks from
points sampled from rough masks. The reason is that sometimes SAM confuses to
segment required objects due to the insufficient information introduced by prompts,
which often causes ambiguous situations for SAM. This causes even drop in metrics
compare to rough masks.

SAM-SR-v3, in general, slightly changes the behavior of the original CRM model,
but refinement quality lefts near the same. SAM decoder struggles to handle com-
plex features provided by the SAM ViT encoder. SAM-SR-v2.1 receives simplified
semantics and performs much better.
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FIGURE 4.3: Illustrating SAM-SR-v2.1 improvement

Name Avg inference time (sec) Peak memory usage (GiB) Avg improvement (IoU/mBA)

Original 8.97 23.8 4.01/15.12
SAM-SR-v2.1 5.7 22.5 4.82/16.13

TABLE 4.6: Summary comparison of previous SOTA refinement
method and proposed SAM-SR-v2.1 with inference optimizations



21

Chapter 5

Conclusion

5.1 Conclusion

This work introduced novel optimization approaches for mask refinement inference,
which decreases memory usage by 1.5 times and inference speed more than two
times while preserving the same refinement quality.

Also, the main weaknesses of the SOTA refiner were addressed by introducing
SAM for better context understanding. Different approaches to SAM integration
were tested and achieved +0.8 IoU and +1 mBA.

Finally, after combining all these improvements proposed method outperforms
the previous SOTA Tab.4.6 in terms of speed, memory, and accuracy
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