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Abstract

The main two paradigms for implementing parallel network servers are syn-
chronous and asynchronous. The first two questions in our heads are: “which one
is better?” and “which one should I use?”. In this thesis, we show answers to these
questions on practice. After overview of existing methodologies and implementa-
tion choices, we design and implement the most representative and valuable ver-
sions of a stateful TCP echo server. Then we test the server based on five major
metrics: throughput, latency, simultaneous client connections number, CPU usage,
and memory consumption. We conclude that a hybrid synchronous solution is a
superior choice for a server with real world workload.
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Chapter 1

Introduction

1.1 Motivation

In the age of computers, the demand for highly efficient and scalable servers, which
can serve thousands, even millions of clients simultaneously and handle the request
from each of them in fractions of a second is higher than ever. Even though the
requirements are constantly increasing, CPU single-core did not gain much perfor-
mance concerning customer needs (Stanford VLSI Group, 2022).

The market came up with multi-core CPUs to fit the order for improvements.
Parallelism gains efficiency by executing the work simultaneously in multiple threads.
What is the best way to use the capabilities of a multi-thread CPU in terms of perfor-
mance maximization? Over the years, we get to the point with two main paradigms:
synchronous and asynchronous methodologies of executing the tasks.

A network server is a typical I/O related and mainly – I/O-bound task. In this
thesis, we compare several synchronous and asynchronous implementations of the
representative parallel network server – the echo server, developed using related
established methodologies and analyze the performance of those implementations.
We use the C++ programming language for implementing the servers.

1.2 C++ Language Overview

An essential choice for the artist is the tool that should have the ability to supple-
ment and visualize his unreachable thoughts. The programming language plays a
vital role in this work. The requirements for it are pretty simple but, at the same
time, superior. In the first place, the language should allow writing very efficient
and complex solutions. Secondly, it should have a reach standard library with well-
designed common components. Furthermore, it should be convenient and flexible to
fit all user’s needs. Last but not least, the industry should trust and use the language
in their needs.

By these requirements, we come up with the two best candidates: C and C++.
Both of them are great. However, C++ fits the requirements better than C. In the
folowin ways:

• It is more convenient than C.

• It provides powerful abstraction mechanisms.

• It has a more prosperous standard library that better suits our research.

As Bjarne Stroustrup, the father of the language writes in his book (Stroustrup, 2013):



Chapter 1. Introduction 2

Except for minor details, C++ is a superset of the C programming lan-
guage. In addition to the facilities provided by C, C++ provides flexible
and efficient facilities for defining new types. A programmer can parti-
tion an application into manageable pieces by defining new types that
closely match the concepts of the application.

In addition to all the positive aspects above, we use C++ because of the low level
of control. We need two perform measurements of the methodologies and not the
implementation-dependent abstraction or the run-time routines of the programming
languages, such as the Java programming language.

1.3 Network Server

According to the basic definition, the network server is a program that offers some
functional/service to other programs or computers, called clients (Wikipedia, 2022b).
The interaction between server and client looks as follows: the client sends a request
to the server, the server processes this task, and sends a response. The processing
of the request could be any manipulation of the data and can differ from implemen-
tation to implementation. To get meaningful and controllable results in this thesis,
we will eliminate the request processing and send the request message back to the
client. We will profile the server’s core function: receiving requests and sending
the response. These types of servers are called Echo Servers as are described in
RFC862 (Echo Protocol 1983).

Another crucial aspect is the session duration. This aspect is critical because
each client session consumes the server’s memory resources and requires constant
monitoring for requests. This option divides servers into two classes: stateless and
stateful. Stateless servers establish a connection with the client only for one request.
After the server receives the data, processes it, and sends a response, it immediately
closes the connection, and no state of the client is saved.

On the contrary, the stateful server does not close the session between the client’s
requests. This server type can remember what actions the client performed in his
session. The session is closed when the user terminates it on his side. Then server
closes the connection end on its side. This paper focuses on stateful echo servers,
potentially more valuable and applicable to common usage scenarios.

1.3.1 Transmission Control Protocol vs. User Datagram Protocol

There are many types of protocols on different network logical layers in the network.
The standard definition of the network layers is described using the Open Systems
Interconnection (OSI Wikipedia, 2022a) model. In simple words, protocols consist
of standardized conventions which define how to transfer data from one host in
the network to another. Depending on the user’s requirement, a protocol type is
chosen. The major used protocols of the transportation layer of the OSI model are
Transmission Control Protocol (TCP) and User Datagram Protocol (UDP).

The main difference between TCP and UDP in this paper context is that TCP
opens a session and can hold it. On the contrary, UDP does not support sessions at
all. It resolves the client request and then sends the response to the destination as a
separate connection (Andrew S. Tanenbaum, 2014).

We interpreted TCP as stateful and UDP as stateless in the previous section. So
as we decided to work with a stateful Echo Server, the best option is to choose
TCP as the layer four protocol. In such a way, we aligned our requirements to
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the server with the standard requirements for the TCP Echo Service description in
RFC862 (Echo Protocol 1983).

1.3.2 Server Requirements

To conduct a performance analysis of synchronous and asynchronous versions of
parallel network servers, we should choose meaningful requirements to get results
representing the actual common server core functionality. The requirements for the
server determine the implementation prerequisites to stay in the scope of the re-
search and get valuable results:

• Server should send back received data from the client as the calculated re-
sponse.

• Server should hold the client session until the client terminates it.

• Server should use TCP as the transport level protocol.

• Choose C++ as the best suitable programming language for implementation.
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Chapter 2

Literature Review

2.1 Synchronous Model

There are few research papers regarding synchronous models compared to asyn-
chronous one. First of all, we will overview the basics. The best point to start is the
definition of the synchronous model.

The synchronous methodology is also referred to as thread-based. The main
criteria of this methodology is when the associated thread stack maintains the exe-
cution of the program (Ilie et al., 2009). In other words, it means that the decision-
making of what should be executed is delegated to the OS. The main characteristics
of synchronous models are:

• Usually easier to use.

• Less efficient because of context switches.

• Have higher memory consumption.

Those conclusions about synchronous models are common among a number of
articles (Karabyn, 2019; Zhang et al., 2020).

2.2 Asynchronous Model

There is an enormous number of works related the asynchronous model topic writ-
ten. In any case, we should start with the definition of the asynchronous methodol-
ogy.

The asynchronous methodology also referred to as event-based, is the one which
behavior is defined by several (non-nested) event handlers called from inside an
event loop. The execution state of a concurrent process is maintained by an asso-
ciated record or object (Ilie et al., 2009). Meaning that a kind of worker processes
dispatches and prioritizes the asynchronous routines.

The main characteristics of asynchronous models are:

• Complicated to use in large designs.

• Usually more efficient.

• Have less memory consumption than synchronous models.

Those conclusions are repeated in a number of related works (Ilie et al., 2009;
Andrew S. Tanenbaum, 2014; Krohn, Kohler, and Kaashoek, 2007).

The following work provides a solid overview of asynchronous models: ”The
Impact of Event Processing Flow on Asynchronous Server Efficiency“ (Zhang et al.,
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2020). The main message of this thesis is to show that real-world asynchronous
solutions are not implemented really efficiently. The common problems faced by
developers are the following:

• The widely adopted one-event-one-handler event processing is not good because
it causes frequent unnecessary context switches between event handlers.

• Repeatedly making unnecessary I/O system calls.

• Underestimate hybrid solutions, which can give from 10 to 90 percent higher
throughput compared to pure asynchronous.

2.3 Kernel

The other option for consideration of accelerating the implementation would be
to execute it as a module in kernel space. In such a way, we would avoid time-
expensive context switches for system calls. We would have the ability to develop a
solution that would use kernel resources directly to avoid unnecessary overhead.

In the article ”TAS: TCP Acceleration as an OS Service“ (Kaufmann et al., 2019),
the authors show that in their case, executing the logic in kernel mode increases the
throughput by up to 90% and lowers the tail latency by 57%. Also, this approach
provides 2.2 times higher throughput for 64000 simultaneous connections. Similar
results we can observe in another article: ”Kernel Paxos“ (Esposito, Coelho, and
Pedone, 2018).



6

Chapter 3

Design Strategies and Tools

3.1 Work Outline

This thesis aims to create synchronous and asynchronous implementations of a par-
allel network server and analyze their performance. To carry out the analysis, we
should gather valid and meaningful measurements by the presentable metrics in
server performance. Another essential point is that we have to establish a setup that
can hold the maximum possible workload that we can reach with our tool-set. We
should not limit the implementations by the network throughput to get valid results.

The work plan is the following:

• Implement the server using all the practical approaches in the scope of this
thesis.

• Perform local validation of the implemented solutions.

• Design and assemble a Cluster and Network setups that will be able to gen-
erate and pass enough traffic to simulate a real-world high load scenario and
measure the performance metrics.

• Assemble and configure the testing setup.

• Measure the Cluster and Network limits.

• Test the implementations and measure their performance.

• Verify that we do not encounter the limits of the cluster and network but push
the implementation to the maximum CPU load.

• Analyze the collected metrics and summarize the results.

3.2 Performance Analysis

3.2.1 Performance Metrics

The first step in performance testing is to choose metrics that will be valuable for
our case study. There is no need to reinvent the wheel. There are common stan-
dardized benchmarking tests in the network performance area that are described in
the RFC2544 (Benchmarking Methodology for Network Interconnect Devices 1999). So the
main performance concern points for our case are:

• Throughput,

• Latency.
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The general approach metrics are not enough for a stateful client-server. In this
case, an important place is the client connections number, as each of them uses some
resources such as CPU, memory, and process file descriptors. By extending our met-
rics model, we get a satisfying set of metrics to design the test setup:

• Throughput,

• Latency,

• CPU consumption,

• Memory consumption,

• File descriptors utilization.

3.2.2 Cluster Setup

FIGURE 3.1: Cluster setup.

Nodes and Hardware

Cluster hardware specification is presented in the Table 3.1. The Switch node is
described in the following Network setup subsection related to the Network setup.

Node name CPU model Phys./Logic RAM, NIC, OS
cores GB MB/sec

Client PC 1 AMD 2990WX 32 / 64 64 125 Ubuntu 20.04 LTS
Client PC 2 i7-1165G7 4 / 8 16 125 Ubuntu 20.04 LTS
Client PC 3 i5-7300HQ 4 / 4 8 125 Ubuntu 20.04 LTS
Server i5-1135G7 4 / 8 32 125 Ubuntu 20.04 LTS

TABLE 3.1: Cluster nodes hardware description

The Server takes the primary role in the setup. For a better understanding of
the processes and performance data results, it is crucial to keep in mind the detailed
characteristics of the server node, which are listed in Table 3.2.
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Characteristic Value
CPU Architecture: x86_64
CPU Model name: 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz
Logical CPUs: 8
Physical CPUs: 4
CPU max MHz: 4200
CPU min MHz: 400
CPU Byte Oserver Little Endian
L1d cache: 192 KiB (4 instances)
L1i cache: 128 KiB (4 instances)
L2 cache: 5 MiB (4 instances)
L3 cache: 8 MiB (1 instance)
RAM 12.0 GB
RAM type DDR4 SDRAM
OS Ubuntu 20.04 LTS
OS Kernel Linux Kernel 5.4
NIC Gigabit Ethernet LAN

TABLE 3.2: Cluster nodes hardware description

Network setup

Our primary concern about network setup is that it should not limit the Server work-
load. The bottleneck of the traffic flow should be the server logic, not the cluster
network HW or configurations. The network should be designed so that the only
limit for traffic throughput should be the limits of the Server NIC, namely 1000GB.

For the interconnection of the cluster nodes, the best available variant was a Cisco
Switch with 4 Ethernet Gigabit ports (Cisco Systems, Inc., 2022) and Ethernet cords
to connect the machines to the switch. As to characteristics of the switch, it can
sustain 1-gigabit egress traffic on one of the Gigabit Ethernet ports when the traffic
is consumed from 3 other Gigabit Ethernet ports, which should sum up to 1 gigabit.
For our test purpose, there is no need for more than one-gigabit server data flow as
the Server NIC can not handle more, and this limitation was not reached during the
server implementations tests.

After we connect the nodes to the switch, we should set for each of the nodes a
static IP address to finish the network setup and for the PCs to have the ability to
communicate over the TCP/IP stack. In Linux, to set a static IP address, we used
the IP command-line tool (Kerrisk, 2022). The IP address and IP masks which were
used we can find in the Table 3.3 below.

Node name IP address IP mask
Client PC 1 192.168.0.1 255.255.255.0
Client PC 2 192.168.0.2 255.255.255.0
Client PC 3 192.168.0.3 255.255.255.0
Server 192.168.0.4 255.255.255.0

TABLE 3.3: Cluster nodes IP addresses setup.
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3.2.3 Network Limitations

In the scope of measuring network limits, we used an open-source command-line
tool – iperf3 (Mah, Poskanzer, Tierney, et al., 2019). We start an iperf3 server instance
on the Server node and an iperf3 client instance on any host node using this program.
Then the client starts flooding the Server and measuring the maximum throughput.
To get the relevant result, we set the traffic payload size to the expected message size
during the implementations performance testing in Section 4.2 that is equal to 64B.

After measuring the throughput by the specifications in the previous paragraph,
we found out that the throughput is 72 MB/sec. That is slightly less than the edge
capabilities of the NIC, and we will not get close to those limits, so the results are
excellent: we have a working test setup that satisfies all requirements for proper
testing.

3.3 Implementation Choices

After investigating the standard solutions which we overviewed in Chapter 2 we
can get to the point of choosing our solution building blocks and mechanisms from
the set of available and commonly used in the industry. In this section, we will go
through the different implementation-specific choices options, which we will filter
out and assemble a high efficient and working solutions in Section 4.1.

3.3.1 Syscalls

Let us overview syscalls that will be useful for implementation purposes. As a
source, we will use Linux manual pages (Kerrisk, 2022). We have three main parts
for a TCP server where syscalls could be needed Socket management, Network IO,
and Clients management. The first part is the TCP socket management syscalls used
for creation, closing, and management through the whole socket lifecycle: from cre-
ation to closure. Here is the list of them (Kerrisk, 2022):

• socket – create an endpoint for communication,

• setsockopt – set options on sockets,

• getsockopt – get options on sockets,

• bind – bind a name to a socket,

• listen – listen for connections on a socket,

• accept – accept a connection on a socket,

• shutdown – shut down part of a full-duplex connection,

• close – close a file descriptor.

At this point, all syscalls have their place in the TCP server work algorithm and
do not have a common replacement. So then continue to the Network IO syscalls (Ker-
risk, 2022):

• read – read from a file descriptor,

• write – write to a file descriptor,
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• recv – receive a message from a socket,

• send – send a message on a socket,

• fcntl – manipulate file descriptor.

Also, we will need so-called Clients management syscalls which will provide
information about some new connections pending on the server socket or requests
pending on the client file descriptors.

• select – wait for some event on a file descriptor – old and outdated syscall,

• poll – wait for some event on a file descriptor – a modern way of performing
the task of the select syscall.

In our asynchronous and hybrid synchronous solutions we will use asynchronous
syscalls such as poll, non-blocking read, and write.

Now, when we have the general view of all related syscalls, let us outline the
synchronous TCP server algorithm from the syscall point of view. We illustrate a
stateless server for simplicity as stateful is much more complex. In Figure 3.2, we
can see the steps which are performed by a standard stateless TCP server.

FIGURE 3.2: Synchronous stateless TCP server algorithm from
syscalls perspective.

3.3.2 Libraries

In the scope of the thesis, we will use the C++ boost library (Kohlhoff et al., 2019)
as an industrial asynchronous toolkit. We need one feature set from this library –
asynchronous IO component, which we are referencing as boost::asio. We will use
this feature to implement asynchronous solutions. The major infrastructure that we
will need can be categorized in such a way:
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• socket management structures,

• asynchronous IO structures,

• asynchronous management structures.

3.4 Synchronous strategies

3.4.1 Multithreaded Synchronous

For our server requirements, we implemented the most straightforward pure syn-
chronous implementation possible. The fundamental concept of this strategy is that
in the main execution loop in the main thread, we accept new connections, and for
each new connection, we create a separate execution thread to handle the client re-
quests. The thread work routine is to receive requests and responds to them by
sending them back to the client.

3.4.2 Single Threaded Hybrid Synchronous

The standard design of a single-threaded synchronous version does not satisfy the
server requirements. If we accept a new connection and do a blocking read, no one
else will be able to connect to our Server until the read is finished. To overcome
this limitation, we will use file descriptor manager syscalls such as poll or select,
which will give us information when we will have new incoming connections or
new clients’ requests. This solution is not pure synchronous implementation as the
call to the manager syscall is considered asynchronous, but such a hybrid strategy is
valuable to implement and investigate.

3.4.3 Multithreaded Hybrid Synchronous

One more strategy that we will discover is slightly different from single-threaded
hybrid synchronous (Section 3.4.2). The difference will be that we will make it multi-
threaded. In the main thread, we will connect new clients and schedule request han-
dle jobs in response to file descriptor management syscall events. In other threads,
we will be handling the client requests. For work organization and thread manage-
ment, we will use a custom-written thread pool.

3.5 Asynchronous Strategies

The asynchronous strategies are designed to be implemented using the boost::asio
library.

3.5.1 Single-threaded Asynchronous

We configure our Server as usual but use the boost::asio interface in this strategy.
Then we schedule the first asynchronous connection accept. Then the handler of
this asynchronous operation will schedule two asynchronous jobs: a new accept and
read for the newly connected client. The next step is that the asynchronous client
read will schedule an asynchronous write in its handler. Finally, the asynchronous
write handler will form a loop by scheduling an asynchronous read.



Chapter 3. Design Strategies and Tools 12

Furthermore, we start the worker in the main execution thread after scheduling
the asynchronous accept. The worker will process the scheduled jobs when they are
ready.

3.5.2 Multithreaded Asynchronous

Similar to the single-threaded Asynchronous strategy (section 3.5.1), the Multithreaded
Asynchronous differs only in the aspect of how many workers are started in sepa-
rate threads. In the main worker thread after scheduling an asynchronous accept
call, we start the required number of workers in separate threads.
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Chapter 4

Experiments

4.1 Implementation

All implementations are available on GitHub repository (Pasichnyk, 2022). C++20
standard was used. The compilation for the test was done using CMake files with
release optimization.

4.1.1 Version echo_server_simple_threaded – sync

This implementation was the most trivial one. We used the read/write syscalls for
IO, the standard C++ threads library for creating threads, and the typical server
syscalls configuration sequence illustrated in Figure 3.2. The algorithm was the same
as described in Section 3.4.1.

4.1.2 Version echo_server_simple – hybrid-sync

We also used the read/write syscalls for IO for this implementation. For client
management, we used the poll syscall and the typical server syscalls configuration
sequence, which is illustrated in Figure 3.2. The algorithm was described in Sec-
tion 3.4.2.

4.1.3 Version echo_server_custom_thread_pool – hybrid-sync

This implementation was the most complex and time-consuming one. The syscall
choice is the same as for the echo-server-simple version(Section 4.1.2). The threads
are used from the standard C++ thread library. A custom thread pool was developed
and integrated for thread management and work schedule. The thread count in is
tuned to the server logical core count to maximize the implementation performance.
The algorithm was described in Section 3.4.3.

4.1.4 Version echo_server_boost_asio – async

This implementation is entirely based on the C++ boost::asio library. All IO functions
used are non-blocking. The algorithm was described in Section 3.5.1.

4.1.5 Version echo_server_boost_asio_threaded – async

This implementation is almost the same as the echo-server-boost-asio(Section 4.1.4)
except for the working threads count. The workers are started in separate threads
using the standard C++ thread library.This difference is also described in the algo-
rithm from Section 3.5.2. The thread count is adjusted to the logical cores number of
the server host used in the tests.
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4.2 Performance Testing

The performance testing is done using the Fortio command-line tool (Demailly et
al., 2022). The Fortio command was issued at a specific time on each test cluster
instance. Before scheduling the test job, the echo node was synchronizing its time
with a local time server running on one of the Client PC 1. In the next step, a job for
a test run is scheduled. A Fortio instance is started with the same parameters at the
scheduled time on each client.

• -qps 0 – try to send maximum number of queries per second,

• -t 60 s – test duration 60 seconds,

• -c <client-num> – client number parameter (values used: 8, 25, 50, 100, 250,
500, 1000, 2000, 5000, 10000),

• -payload-size 64 – set the client message size,

• -uniform – de-synchronize parallel clients’ requests uniformly,

• -json <file-path> – the JSON output file path.

The result was then collected and merged. A running server implementation was
restarted for each test run on the server. Also, the server was running a background
task that constantly logged CPU usage, memory usage, and network read/write
bytes and appended to each read a timestamp by which the results were filtered.

4.3 Results

Results are visualized for more straightforward perception and presented once in
the original scale and a logarithmic one. Every implementation is visualized on the
plots as lines or bars of a unique specific color.

4.3.1 Throughput in respect to Clients number

Figure 4.1 shows that single-threaded hybrid synchronous (Section 4.1.2) and asyn-
chronous multithreaded (Section 4.1.5) implementations have the best results in terms
of throughput. For the average connection count values, the asynchronous one is
dealing better in the range of (250-2000). But starting from 2000 and higher, the
synchronous one seems to manage a higher number of connections better. The
asynchronous single-threaded version (Section 4.1.4) shows the worst results when
the number of connections goes over 2000. The synchronous multithreaded im-
plementation (Section 4.1.1) shows average results, but as numbers of connections
goes higher – greater than 2000, this version has a descending dynamic in terms
of throughput. Though, taking into account simplicity of this implementation, it
performs really well. The hybrid synchronous multithreaded implementation (Sec-
tion 4.1.3) shows the lowest results from the lowest connection number to 2000.
Starting from 5000 connections, it has average values among all our versions. If
we compare how much time it takes to implement, it is not worth that effort.
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FIGURE 4.1: Throughput in respect to clients number by implemen-
tation version.

4.3.2 Latency in respect to Clients Number

Average Latency

On the average latency plot in Figure 4.2 we observe that all except single-threaded
asynchronous implementation (Section 4.1.4) have similar results and constant sta-
ble growth in latency. The latency of the single-threaded asynchronous implemen-
tation beginning from 2000 connections grows much faster than other implementa-
tions. The synchronous multithreaded implementation (Section 4.1.1) starting from
5000 connections has worse results than the hybrid synchronous multithreaded ver-
sion (Section 4.1.3), so the difference between those two implementations was rel-
atively small at less than 5000 connections. We can summarize that the hybrid
synchronous multithreaded version has better results than the synchronous mul-
tithreaded one in terms of average latency. However, in the perspective of a real-
world server at such a high server load, the difference between all implementations,
except the single-threaded asynchronous one, is not noticeable.

Percentile 90

Based on the average latency results, we expect that as the client number increases,
the latency will grow appropriately. It is easily visible on a plot with the 90 percentile
latency on Figure 4.3.

We can observe that latency percentile for all implementations is similar among
all versions when there are less than 100 simultaneous clients connected to the server.
Then from 100 to 2000 connections, the synchronous version(Section 4.1.1) demon-
strates better results, probably because of better and faster dispatcher mechanisms
and fewer unnecessary syscalls. However, when we reach 5000 connections, we ob-
serve that the synchronous version latency values severely increase, so this imple-
mentation takes the next to last place based on the 90s latency percentile. The most
stable and predictable result shows the hybrid synchronous version (Section 4.1.2).
As the connection number will grow to over 10000 probably this implementation
will be not able to manage such a number of connections in a single thread. On
middle range connection numbers such as 5000, the asynchronous, multithreaded
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FIGURE 4.2: Average latency in respect to clients number.
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FIGURE 4.3: 90 percentile latency in respect to clients number.

version (Section 4.1.5) shows better results. It could be considered the best ver-
sion for this number of connections. However, we cannot make such a conclusion
with such poor resolution of the plot. Based on current test latency data, this im-
plementation can take the place of the second-best solution. Right behind asyn-
chronous multithreaded would be a multithreaded hybrid synchronous implemen-
tation(Section 4.1.3). The worst values are from the asynchronous single-threaded
implementation(Section 4.1.4).

Percentile 99

For plot on Figure 4.4 with 99 percentile we see that all threaded implementations
(from Sections 4.1.5, 4.1.1, and 4.1.3) have 1 percent of responses with latency over
200 milliseconds when they have 5000 or more clients. Other two implementations
(from Sections 4.1.2 and 4.1.4) have stable results at 99 percent of responses. The
most stable latency results on our server load are still shown by the hybrid syn-
chronous implementation (Section 4.1.2).



Chapter 4. Experiments 17

0 2,000 4,000 6,000 8,000 10,000

Simultanious connected clients number
0

50

100

150

200

250

300
La

te
nc

y 
fo

r 9
9s

 p
er

ce
nt

ile
, m

s

1 2 10 20 100 200 1,000 10,000

Simultanious connected clients number
0.1

0.2

1

2

10

20

100

200

1,000

La
te

nc
y 

fo
r 9

9 
pe

rc
en

til
e,

 m
s

echo_server_boost_asio echo_server_boost_asio_threaded echo_server_custom_thread_pool echo_server_simple echo_server_simple_threaded

Implementations

FIGURE 4.4: 99 percentile latency in respect to clients number.

Percentile 99.9

At this point, taking into account the 99.9 percentile plot (Figure 4.5), we can get to
the conclusion that the hybrid synchronous single-threaded version (Section 4.1.2)
is the most stable in the range up to 10000 connections. Also, from this plot, we
see that asynchronous single-threaded implementation (Section 4.1.4) tends to have
outliers responses with latency over 800 milliseconds with a probability of about
0.01 percent. Other implementations have, on average, latency outliers with similar
values.
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FIGURE 4.5: 99.9 percentile latency in respect to clients number.

4.3.3 CPU usage in respect to Clients Number

The Figure 4.6, demonstrates the utilization of CPU by each of the implementations
in a real-world load scenario with different numbers of connected clients. The hy-
brid synchronous single thread (Section 4.1.1) and the single thread asynchronous
(Section 4.1.4) have the lowest CPU usage. However, they both fully utilize their
single execution thread. Furthermore, in the middle of the rating is the synchronous
multithreaded version which consumption rises from 10 to 60 percent as the connec-
tion number grows from 8 to 1000. For more than 1000 client connections, the CPU
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usage varies from 55 to 75 percent. The asynchronous multithreaded (Section 4.1.5)
and hybrid synchronous threaded (Section 4.1.3) implementations consume much
more CPU time than others. However, they do not use the full potential of the CPU.
This behavior can be explained due to not having enough load on each client, or
there are not enough connections to utilize the CPU fully. They both perform almost
the same way until the number of the connections reaches 200. After that point,
the asynchronous, multithreaded version consumes 10 percent more CPU than the
hybrid synchronous threaded.
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FIGURE 4.6: CPU usage in respect to clients number by implementa-
tion version

4.3.4 Memory usage in respect to Clients Number

From the memory usage plot (Figure 4.7), we can indeed say that the synchronous
implementations (Section 4.1.1) consume more memory. Memory usage grows lin-
early with the connected clients because separate threads are created to handle each
connection. As we can observe, each thread consumes significantly more memory
for each connection than all other implementations.
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FIGURE 4.7: Memory usage in respect to clients number by imple-
mentation version.
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Chapter 5

Conclusions

5.1 Conclusions

This thesis was aimed to implement and analyze the performance of the several
typical synchronous and asynchronous implementations of parallel network servers
using C++. We implemented five versions of the parallel server. The maximum
supported simultaneous connection number is up to 10000. The last stage is to make
meaningful conclusions based on test results that will answer the questions: Which
methodology should we use? Synchronous or Asynchronous?

There is no master key solutions or methodology. Concerning our needs, we
choose the methodology that will suit our particular case the best. The main param-
eter is how many connections we expect to have. Furthermore, from this perspective,
we will divide the conclusions into three ranges:

• Low region – expected connection number is above 100,

• Middle region – expected connection number is between 100 and 2000,

• High region – expected connection number is above 2000.

For the low connection numbers region, the latency is quite similar among all
implementations, so we will focus on the throughput, CPU, and memory utiliza-
tion. So the first place takes the synchronous multithreaded implementation (Sec-
tion 4.1.1), which shows the best throughput results on average. It is in the middle
of the rating by CPU consumption. However, the memory usage is much more sig-
nificant than for the other versions. If we are concerned about memory usage, our
second-best choice would be the hybrid synchronous single-threaded implementa-
tion (Section 4.1.2). It is the most memory efficient, with no high CPU utilization and
second-best throughput values.

Regarding the middle range, the latency, on average, is the same except for
the synchronous multithreaded version (Section 4.1.1), which has colossal latency
values, jumping from around 10 to around 200 milliseconds. The best choice in
this range will be the asynchronous threaded version (Section 4.1.5), with the best
throughput results. The downside here is high CPU usage and average memory con-
sumption. So if we care about CPU consumption, we have the second-best choice –
hybrid synchronous single-threaded implementation (Section 4.1.2). It has second-
best throughput results, low CPU and memory consumption, and highly stable and
predictable latency values.

Now about the high client connection numbers region. The finest choice here
for all parameters is the hybrid synchronous single-threaded implementation (Sec-
tion 4.1.2). It has the best throughput, latency stability, and efficient CPU and mem-
ory usage. The 10000 client number, which is supported now, is not able to fully load
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the multithreaded implementations (see Figure 4.6), so the overhead introduced by
using threads does not pay off.

The hybrid synchronous single-threaded implementation (Section 4.1.2) is the
best choice for a server with the requirements:

• Support up to 10000 simultaneous connections.

• Handle up to 333000 QPS with 10000 connected clients.

• Easy and cheap in implementation and maintenance.

• Work stably on real-world server load.

• Have relatively small latency values.

5.2 Future Improvements

We investigated the main implementation choices in this work and tested them on a
real network setup. There are many options to extend the work by exploring other
methodologies and improving the analysis of implemented and investigated ver-
sions. The possible further steps to improve this research are:

• Use BPF performance tools (Gregg, 2019) to investigate were are the bottle-
necks of each implementation.

• Investigate the Kernel extensions which could be implemented in the scope of
this thesis.

• Investigate the possible traffic offload options and implement them.

• Perform longer performance tests for more accurate results.

• Try out different testing tools or implement our own.

• Investigate and try out the possibility of configuring NIC Network ACLs to act
as an echo server and analyze the results.
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