
UKRAINIAN CATHOLIC UNIVERSITY

MASTER THESIS

Corner localization and camera calibration
from imaged lattices

Author:
Andrii STADNIK

Supervisor:
Dr. James PRITTS

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2023

http://www.ucu.edu.ua
https://www.linkedin.com/in/anstadnik/
https://prittjam.github.io/

ii

Declaration of Authorship
I, Andrii STADNIK, declare that this thesis titled, “Corner localization and camera
calibration from imaged lattices” and the work presented in it are my own. I confirm
that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

iii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Master of Science

Corner localization and camera calibration from imaged lattices

by Andrii STADNIK

Abstract

This thesis proposes a model-based approach to improve the detection of calibra-
tion board fiducials from calibration imagery taken by wide-angle or fisheye lenses.
From a single image, we estimate the camera model and project the calibration board
into the image to guide the search for missed detections and reject spurious detec-
tions. In addition, we propose a classifier to label ambiguous detections that are
geometrically plausible given the estimated camera model and imaged board. The
proposed method addresses shortcomings of the state-of-the-art, which struggle to
reliably detect board fiducials at the extents of the image, where the lens distortion
is most observable. The proposed method recovers additional corners that can be
used to place additional constraints on the non-convex camera calibration problem,
which improves the likelihood of convergence to a global minimum.

The code for this paper is available on GitHub 1.

1https://github.com/anstadnik/camera_calibration

HTTP://WWW.UCU.EDU.UA
https://github.com/anstadnik/camera_calibration

iv

Acknowledgements
I wish to thank the Armed Forces of Ukraine for protecting us. Thanks to those brave
people I was able to study and work on this thesis. I want to thank my supervisor, Dr.
James Pritts, for his guidance and support throughout the whole process of writing
this thesis. I also want to express my gratitude to all of the people who encouraged
me to keep going and inspired me to do my best: my groupmates, my friends, and
my girlfriend.

v

Contents

Declaration of Authorship ii

Abstract iii

Acknowledgements iv

1 Introduction and motivation 1
1.1 Outline of the problem . 1
1.2 Research objective . 2
1.3 Thesis structure . 2

2 Related work 3
2.1 Camera calibration . 3
2.2 Calibration boards . 3
2.3 Camera models . 3
2.4 Camera parameters estimation . 4
2.5 Boards’ features detection . 4

3 Background 6
3.1 Notation . 6
3.2 Camera model . 6

3.2.1 Perspective projection . 6
3.2.2 Scene to camera projection . 7
3.2.3 Camera to image projection . 7
3.2.4 Camera matrix . 8
3.2.5 Projection of the points from the scene plane 8
3.2.6 Distortion . 8

Back-projection using the Division Model 8
3.2.7 Complete projection and backprojection 9

4 Approach 10
4.1 Feature detection . 10
4.2 Camera calibration . 10

4.2.1 Reprojection error . 10
4.2.2 Initial approximation . 11

Solving for the camera extrinsic parameters 11
Solving for the camera intrinsic parameters 13

4.2.3 Optimization . 14
4.3 Additional features detection . 14
4.4 Classifier . 14

4.4.1 Corner detection . 15
4.4.2 Classifier training . 15

vi

5 Experiments 16
5.1 Simulator . 16
5.2 Metrics . 16
5.3 Dataset . 16
5.4 Camera calibration . 18
5.5 Additional features detection . 18
5.6 Classification . 19
5.7 Evaluation . 20

5.7.1 Recovery of artificially removed points 20
5.7.2 Performance under occlusion . 21
5.7.3 Recovery of previously undetected points 22

6 Conclusions 24
6.1 Future work . 24

Bibliography 25

1

Chapter 1

Introduction and motivation

1.1 Outline of the problem

Better camera calibration improves the performance of various downstream tasks by
providing a more accurate mapping between 3D world coordinates and 2D image
plane coordinates. This improved mapping enables precise alignment, positioning,
and scaling of objects within the scene. By determining the camera’s intrinsic and
extrinsic parameters, algorithms can correct for lens distortion, estimate depth in-
formation, and accurately overlay virtual content. Consequently, tasks such as 3D
reconstruction, augmented reality, and object detection can achieve better results in
terms of precision, spatial consistency, and overall visual quality.

Although manufacturers can estimate camera calibration parameters a priori,
fully automatic calibration is often preferred, especially when camera metadata is
unavailable. Currently, wide-angle lenses, particularly in mobile phones and GoPro-
type cameras, dominate consumer photography. These cameras pose additional
challenges due to their requirement for highly non-linear models with numerous
parameters. The high distortion of the image plane also makes finding key points
robustly challenging.

Typically, camera calibration is obtained by capturing an image of a known cal-
ibration pattern, which is then used to estimate the camera parameters. Alterna-
tively, some methods do not use a calibration pattern but instead, infer geometric
constraints directly from the scene. However, this approach is generally less accu-
rate.

As reported by Duisterhof et al. (2022) on Oct. 5, 2022, the current state-of-the-art
methods (Olson, 2011; Schöps et al., 2020; Krogius, Haggenmiller, and Olson, 2019)
fail on images with high distortion. Duisterhof et al., 2022 suggested an iterative the
approach of image undistortion and target reprojection, achieving the superior ro-
bustness to the noise than the state-of-the-art methods because the feature detection
is performed on the undistorted image.

Instead of searching for the features on the undistorted image from scratch, it is
possible to utilize the prior knowledge of the geometry of the calibration board, ef-
fectively predicting the possible positions of previously undetected features. It can
be done by projecting the board onto the image using the intermediate camera cali-
bration, and then filtering the possible positions in order to eliminate false positives.

These additional points will further constrain the camera calibration, improving
the accuracy of the calibration parameters.

2 Chapter 1. Introduction and motivation

FIGURE 1.1: Example of corners near the center of the image and the
edge

1.2 Research objective

The objective of this research is to add additional constrains to the camera calibration
by finding previously undetected features on the calibration board. For that, we
formulate the set of research questions:

• How to find additional features on the calibration board which were not de-
tected by the feature detector?

• How to filter out falsely detected features?

• Is there a need for finding additional features on the calibration board? Are all
of the points detected?

1.3 Thesis structure

This paper has the following structure: in chapter 2, we will describe subtopics of the
camera calibration, and outline the current state-of-the-art solutions. In chapter 3,
we will describe the key concepts of camera calibration. Also, there we provide
additional details on the underlying math, for example, the derivation of the division
model inversion. In chapter 4, we will describe the steps of the proposed method
in detail, including feature detection, initial camera calibration, camera parameters
estimation via minimization of the reprojection error, and the process of searching
and filtering the previously undetected features. In chapter 5, we will describe the
metrics we used, provide details about the datasets, show the results of each of the
algorithm’s steps, and evaluate it on multiple metrics. Finally, in chapter 6, we will
summarize the results and outline future work.

3

Chapter 2

Related work

2.1 Camera calibration

Getting the correspondence between the spatial and the image coordinates requires
camera calibration. Camera calibration consists of the geometric camera model and
the parameters of this model. That information makes it possible to obtain the 2d
image coordinates of any point in the 3d space.

Usually, the geometric camera model is obtained from the domain knowledge of
the researcher or the camera manufacturer. Often, they choose the simplified model
as a trade-off between accuracy and complexity. The model’s parameters are usually
obtained by solving the constrained optimization problem, given the set of points
with known geometry.

2.2 Calibration boards

To achieve a robust calibration, images with repeating patterns are usually used. The
camera calibration parameters can be found using prior knowledge of the properties
of the pattern, such that the pattern invariants hold on the image. Initially, the chess-
board (OpenCV: Camera Calibration 2023; V. Douskos, I. Kalisperakis, and G. Karras,
2007) patterns were used (fig. 2.1a).

Later, ArUco (Garrido-Jurado et al., 2014) (fig. 2.1b) and AprilTag (Olson, 2011)
(fig. 2.1d) allowed detecting the orientation of the pattern, as well as uniquely iden-
tifying each located pattern even under occlusion. Later, based on ArUco pattern,
ChArUcO (OpenCV: Camera Calibration 2023) (fig. 2.1c) was proposed as more ro-
bust.

There are also other calibration patterns, some of which are not square (for exam-
ple, Delitlle (Ha et al., 2017)).

2.3 Camera models

The choice of the camera model depends on the camera’s physical properties and
the accuracy required. Usually, the parametric models are simpler to use, as they
have only a few parameters and deliver good accuracy. The most common are the
Double Sphere model (Usenko, Demmel, and Cremers, 2018), the Kannala-Brandt
model (Kannala and Brandt, 2006), and the Field-of-View model (Devernay and
Faugeras, 2001). In the ill-posed problem of camera calibration, the common choice
of the camera model is the division model (Fitzgibbon, 2001). This model is dis-
cussed in details in section 3.2.6. However, Schöps et al., 2020 shows that they tend
to have significantly higher errors than the non-parametric (general) models. The

4 Chapter 2. Related work

(A) Chessboard OpenCV: Camera Calibration
2023

(B) ArUco board OpenCV: Detection of ArUco
Markers 2023

(C) Charuco board OpenCV: Detection of
ChArUco Boards 2023 (D) AprilTag board Rosebrock, 2020 (right)

FIGURE 2.1: Calibration boards.

Lochman et al., 2021 suggested a framework for converting the parameters of a pow-
erful back-projection Z. Zhang, 2000 model to recover different models’ parameters.

2.4 Camera parameters estimation

Camera calibration using repeating patterns was an important subject for a long
time, for example, Schaffalitzky and Zisserman, 1998 in 1998 and Z. Zhang, 2000.

Nevertheless, camera calibration is still an open problem; recently, multiple new
approaches have arisen. Davide Scaramuzza, Agostino Martinelli, and Roland Sieg-
wart, 2006 proposed an automatic algorithm for camera calibration, which did not
use any model of the specific omnidirectional sensor. Is is described in details in
section 4.2.2. Lochman et al., 2021 suggest a universal approach to camera calibra-
tion, with a separate step of converting between camera models. Hu et al., 2019 used
deep learning to detect ChArUcO boards. Recently, on Oct. 5, 2022, Duisterhof et al.,
2022 introduced the iterative approach to camera calibration, which outperforms the
previous state-of-the-art approaches for wide-angle cameras.

2.5 Boards’ features detection

The detection of the calibration board’s features is a crucial step in the camera cal-
ibration pipeline. The detection accuracy directly affects the calibration accuracy.

2.5. Boards’ features detection 5

Besides feature detection, it’s also important to associate the detected features with
the board’s corners.

There are various feature detection methods. Many of them require prior knowl-
edge of the board’s geometry, such as the number of rows and columns, and require
the full visibility of the board. For example, the default OpenCV implementation of
the chessboard detection (OpenCV: Camera Calibration 2023).

Because of that, other methods were proposed, such as Fuersattel et al., 2016 and
Geiger et al., 2012 (section 4.4.1). Those methods can detect the board and associate
the corners with the borders’ corners under the partial occlusion and do not require
prior knowledge of the board’s geometry.

Chen and G. Zhang, 2005 (section 4.4.1) proposed using Hessian to find pixel
positions of the corners.

6

Chapter 3

Background

3.1 Notation

Term Description

u =
(
u, v, 1

)T A point in the board coordinate system
x =

(
x, y, z, 1

)T A point in the world coordinate system
R A 3 × 3 rotation matrix
t A 3 × 1 translation vector

αx Scale factor in the x direction (pixels/mm)
αy Scale factor in the y direction (pixels/mm)

cx, cy Coordinates of the principal point (image center)
θ Angle between the x and y pixel axes
f Distance from the camera center to the image plane (focal length)

fx, fy Effective focal lengths in the x and y directions
K Intrinsic matrix incorporating the scaling, introduced by the focal length
H A 3 × 3 matrix viewing z = 0 (see section 3.2.5)

λn Distortion coefficients

TABLE 3.1: Notation

3.2 Camera model

In this paper, scene and image points are represented using homogeneous coordi-
nates. This approach allows to represent many geometric transformations as linear,
which simplifies the mathematical representation of the camera model.

3.2.1 Perspective projection

The perspective projection is a mapping from a 3D point
(
x, y, z

)T in the world coor-

dinate to the 2D coordinate
(
u, v

)T on the image plane which is distance f from the
center of projection. It is given by the perspective projection equation:

(
u, v

)T
=

f
z
(
x, y

)T .

3.2. Camera model 7

This equation can be written using the homogeneous coordinates:

α

u
v
1

 =

 f 0 0 0
0 f 0 0
0 0 1 0




x
y
z
1

 , (3.1)

where α = 1/z is a scale factor.

3.2.2 Scene to camera projection

A 3D scene point
(
x, y, z

)T can be projected onto the image plane as R
(
x, y, z

)T
+ t,

where R is a 3 × 3 rotation matrix and t is a 3 × 1 translation vector. Using the
homogeneous coordinates, this can be written as:

[
R t
0T 1

]
x
y
z
1

 . (3.2)

3.2.3 Camera to image projection

To project a point from the camera coordinate system to the image plane, we need
to apply a homography encoding the camera’s intrinsic parameters. This is a 3 × 3
upper-triangular matrix: αx αx cot θ cx

0 αy sin θ cy
0 0 1

 , (3.3)

where:

• αx and αy represent the scale factor of the camera in terms of pixels⁄mm in the x and
y directions respectively.

• cx and cy are the coordinates of the principal point, which is typically the image
center.

• cot θ and sin θ are related to the skew coefficient, which measures the angle
between the x and y pixel axes. The variable θ represents this angle.

For a typical camera, θ = π/2 and αx = αy Hartley and Zisserman, 2004.
Conventionally, the intrinsic matrix incorporates the scaling, introduced by the

focal length:

K =

αx αx cot θ cx
0 αy cy
0 0 1

 f 0 0
0 f 0
0 0 1

 =

 fx k cx
0 fy cy
0 0 1

 . (3.4)

By incorporating the assumptions, mentioned previously into the intrinsic ma-
trix, we can simplify it to:

K =

 f 0 cx
0 f cy
0 0 1

 . (3.5)

8 Chapter 3. Background

3.2.4 Camera matrix

The composition of positioning and orienting the camera, projection, and imaging
transformation can be represented by a 3× 4 camera matrix (D. Scaramuzza, A. Mar-
tinelli, and R. Siegwart, 2006). This matrix can be expressed as:

K
[
I3|0

] [R t
0T 1

]
= K

[
R|t

]
, (3.6)

Hence, the transformation of a point in the scene by the camera P3×4 can be
formulated as:

α(u, v, 1)T = K
[
R|t

] (
x, y, z, 1

)T , (3.7)

with α being 1/z.

3.2.5 Projection of the points from the scene plane

When working with the coplanar scene points, we can simplify the projection by
assuming that the scene plane is located at z = 0. In this case, the projection of the
point becomes:

α

u
v
1

 = K
[
r1 r2 r3 t

]
x
y
0
1

 = K
[
r1 r2 t

]︸ ︷︷ ︸
H

x
y
1

 . (3.8)

3.2.6 Distortion

The distortion of the image is caused by the lens not being perfectly planar. Typ-
ically, the small distortions caused by lens misalignment are ignored Hartley and
Zisserman, 2004, allowing us to model the distortion as radially symmetric. Then,
the function that maps a point u =

(
u, v, 1

)T from a retinal plane to the ray direction
in the camera coordinate system is given by:

g(u) =
(
u, v, ψ(r(u))

)T , (3.9)

where r(u) =
√

u2 + v2 is the radial distance from the principal point.

Back-projection using the Division Model

The division model has a good ability to model the distortion of the wide-angle
lenses (Fitzgibbon, 2001), and is wildly used (Pritts et al., 2021; D. Scaramuzza, A.
Martinelli, and R. Siegwart, 2006). The model is defined as:

ψ(r) = 1 +
N

∑
n=1

λnr2n, (3.10)

where λn are the distortion coefficients.
The function ψ(r) is not invertible in general. Let x̂ =

(
x, y, z

)T
= αg(u) be a ray

in the camera coordinate system.

3.2. Camera model 9

Then,

x
z
=

(x
z , y

z , 1
)T (3.11)

=
(

αu
αψ(r(u)) , αv

αψ(r(u)) , 1
)T

(3.12)

=
(

u
ψ(r(u)) , v

ψ(r(u)) , 1
)T

. (3.13)

From 3.13 we see that{
x
z = u

ψ(r(u))
y
z = v

ψ(r(u))

=⇒
{

u = xψ(r(u))
z

v = yψ(r(u))
z

. (3.14)

Now, let r̂ be a root of r(u) =
√

x∗ψ(r)
z

2
+ y∗ψ(r)

z

2
= r.

Then, u = f (x) = r̂
r(x)x, where f (·) is the inverse of g(·).

3.2.7 Complete projection and backprojection

Now, the complete projection and back-projection can be formulated as follows:

αu = K f (Hx) (Projection)

αx = H−1g(K−1u). (Back projection)

10

Chapter 4

Approach

4.1 Feature detection

For feature detection, we used the approach, proposed by Geiger et al., 2012 (see
sections 2.5 and 4.4).

4.2 Camera calibration

In this work, we obtained the camera calibration in two steps: first, we used the ap-
proach, proposed by Davide Scaramuzza, Agostino Martinelli, and Roland Siegwart,
2006 to obtain the initial approximation of the camera parameters. Then, we used
optimization to minimize the reprojection error between the board and the back-
projected corners. A division model is very powerful and can express a wide range
of distortions (Pritts et al., 2021). In this work, we used a model with two parameters
to allow for better flexibility during the optimization.

4.2.1 Reprojection error

The reprojection error is the distance between the reprojected point and the mea-
sured one. It is used to evaluate the quality of the camera calibration.

We minimized the reprojection error between the board and back-projected cor-
ners, which were initially detected. The projection and back-projection are the in-
verse of each other, hence minimizing the error between the projection of the board
and the detected corners and minimizing the error between the back-projection of
the detected corners and the board are equivalent. We minimized the error between
the board and the back-projected corners because back-projection does not require
the root finding.

Let’s define the following variables: θ =
(
θx, θy, θz

)T is the vector of Euler rota-

tion angles, t =
(
tx, ty, tz

)T is the translation vector, λ =
(
λ1, λ2

)T is the intrinsic

parameters vector, is the focal length, and s =
(
sx, sy

)T is the sensor size. From the

input image, we know the resolution r =
(
rx, ry

)T. From the rotation vector, we can
compute the rotation matrix R as:

From θ, the rotation matrix R can be calculated as follows:

R = R(θx)R(θy)R(θz), (4.1)

where

4.2. Camera calibration 11

R(θx) =

1 0 0
0 cos(θx) − sin(θx)
0 sin(θx) cos(θx)

 (4.2)

R(θy) =

 cos(θy) 0 sin(θy)
0 1 0

− sin(θy) 0 cos(θy)

 (4.3)

R(θz) =

cos(θz) − sin(θz) 0
sin(θz) cos(θz) 0

0 0 1

 . (4.4)

Then, H is given by:
H =

[
r1 r2 t

]
. (4.5)

We can compute the intrinsic camera matrices as follows:

K =


f rx
sx

0 rx
2

0 f ry
sy

ry
2

0 0 1

 . (4.6)

Then, the back-projection of a 2D point u =
(
u, v, 1

)
into a scene point with z = 0

x =
(
x, y, 1

)
is given by:

x = Hgλ1,λ2(K
−1u). (4.7)

4.2.2 Initial approximation

Davide Scaramuzza, Agostino Martinelli, and Roland Siegwart, 2006 proposed an
automatic method for camera calibration, which consisted of the following steps:

• Solving for the camera extrinsic parameters

• Solving for the camera intrinsic parameters

• Linear refinement of the intrinsic and extrinsic parameters

• Iterative center detection

• Non-linear refinement

In this work, we focused on a single image, while the original approach relied on
multiple images. Therefore, we used only the first two steps of the algorithm.

Solving for the camera extrinsic parameters

To derive the solver for the camera extrinsic parameters, start from eq. (Projection):

αu = K f (Hx) (4.8)

αK−1u = f (Hx) Move K to the left side (4.9)

αg(K−1u) = g(f (Hx)) Set û = K−1u; apply g(·) to both sides (4.10)

α

 ûx
ûy

ψ(r(û))

T

= Hx. (4.11)

12 Chapter 4. Approach

For K we used the placeholder values. f was set to a constant value for the typical
consumer camera, and cx, cy were set to the center of the image. The correct values
will be computed during the optimization section 4.2.3.

To eliminate the dependency on the scale α, multiply both sides vectorially by
g(û):

αg(û)× g(û) = g(û)× Hx = 0 =⇒
(
û, v̂, ψ(r(û))

)T ×
[
r1 r2 t

]T x = 0. (4.12)

From eq. (4.12), we can see that a point contributes to three homogeneous equa-
tions:

v̂(r31x + r32y + t3)− g(r(û))(r21x + r22y + t2) = 0 (4.13)
g(r(û))(r11x + r12y + t1)− û(r31x + r32y + t3) = 0 (4.14)

û(r21x + r22y + t2)− v̂(r11x + r12y + t1) = 0. (4.15)

Only eq. (4.15) is linear in the unknowns. Each point gives a single equation.
Now, by rewriting the equation in the matrix form M · h = 0, where

h =
(
r11, r12, r21, r22, t1, t2

)T ,

we get:

M =

 −v̂1x1 −v̂1y1 −û1x1 −û1y1 −v̂1 −û1
...

...
...

...
...

...
−v̂NxN −v̂NyN −ûNxN −ûNyN −v̂N −ûN

 (4.16)

, where N is the number of points.
The linear estimate of h is found by minimizing ∥M · h∥2 using SVD. The solu-

tion is known up to a scale factor.
To find t1 and t2, note that r1 and r2 are orthonormal:

λ2r11r12 + λ2r21r22 + λ2r31r32 = 0 (4.17a)

λ
√

r2
11 + r2

21 + r2
31 = 1 (4.17b)

λ
√

r2
12 + r2

22 + r2
32 = 1, (4.17c)

where λ is non-zero multiplier.

4.2. Camera calibration 13

Now, to solve for r31 and r32, first find possible values for r2
32:

− r11r12 + r21r22

r32
= r31 Solve eq. (4.17a) for r31

(4.18)√
λ2

(
(r11r12 + r21r22)2

r2
32

+ r2
11 + r2

21

)
= 1 Substitute into eq. (4.17b)

(4.19)

λ2
(
(r11r12 + r21r22)2

r2
32

+ r2
11 + r2

21

)
= 1 Square both sides (4.20)

λ2
(
(r11r12 + r21r22)2

r2
32

+ r2
11 + r2

21 − r2
12 − r2

22 − r2
32

)
= 0 Subtract eq. (4.17c)

(4.21)

(r11r12 + r21r22)2

r2
32

+ r2
11 + r2

21 − r2
12 − r2

22 − r2
32 = 0 Divide both by λ2 (4.22)

r4
32 − (r2

11 + r2
21 − r2

12 − r2
22)r

2
32 − (r11r12 + r21r22)

2 = 0 Multiply by r2
32. (4.23)

Now, solve eq. (4.23) for r2
32, and take a root to find possible values for r32.

To find r31, substitute the found values for r32 into eq. (4.18) or subtract eq. (4.17a)
from eq. (4.17a) and solve for r31 depending on the value of r32:r31 = − r11r12 + r21r22

r32
r32 ̸= 0 (4.24a)

r31 = r2
11 + r2

21 − r2
12 − r2

22 r32 = 0. (4.24b)

Now, it’s possible to find H for each of the pairs of r31 and r32.
Lastly, to select the correct H, the author assumes that one of the boards’ cor-

ners has the coordinates
(
0, 0

)T. Then, the rotation wouldn’t affect this point, and it

would be projected to
(
r31, r32

)T. Hence, the best matrix would be such that has the

closest
(
r31, r32

)T to
(
x, y

)T of the corner, which is associated with the board’s corner

with coordinates
(
0, 0

)T.
However, often the algorithm finds who matrices H such that they have the same

r31 and r32, but different r11, r21, r12. To find the best matrix, we found the intrinsic
values for each of them and back-projected the board’s corners using both matrices.
Then, we used the one which gave the smallest reprojection error.

Solving for the camera intrinsic parameters

Now, to find the rest of the parameters, we substitute the values, found in the pre-
vious step into eq. (4.13) and eq. (4.14). We assumed the number of the division
model’s parameter to be equal to 2, and the scalar multiplier to be equal to 1 sec-
tion 3.2.6: 

A1ρ2
1 A1ρ4

1 −v1
C1ρ2

1 C1ρ4
1 −v1

· · · · · · · · ·
ANρ2

N ANρ4
N −vN

CNρ2
N CNρ4

N −vN

 ·

λ1
λ2
t3

 =


B1 − A1
D1 − C1

· · ·
BN − AN
DN − CN

 , (4.25)

14 Chapter 4. Approach

where

Ai = r21xi + r22yi + t2 (4.26)
Bi = vi(r31xi + r32yi) (4.27)
Ci = r11xi + r12yi + t1 (4.28)
Di = ui(r31xi + r32yi). (4.29)

The solution can be found using the least squares method.

4.2.3 Optimization

The loss function is the sum of the squared reprojection errors between the board
and the back-projected corners, which were initially detected:

L =
N

∑
i=1

∥∥∥H−1gλ1,λ2(K
−1ui)− xi

∥∥∥2
. (4.30)

For the initial guess, we used the randomly chosen constant small values.
The model converged to the same results compared to the initial parameters, set

using the Scaramuzza solver, unless the initial guess was very degenerate (i.e. R was
such that the board plane passed through the principal point and all back-projected
points were projected onto the same line).

This issue also occurred with random small initial values, due to the best approx-
imation for R which minimizes L when the distance from the back-projected board
from measure one was high (i.e., the t was far from the true value) being the degener-
ate solution. To avoid this issue, we first optimized only the t, until the loss function
converged, meaning that t is close to the true value.

However, another issue was that when the board was rotated close to the 180◦,
R once again converged to the degenerate solution. In order to avoid this issue, we
found the solution with the initial θz set to value, close to 0◦ and 180◦, and then used
the solution which minimized the loss function.

4.3 Additional features detection

Often, not all of the board’s corners were detected initially. Firstly, we assumed that
the whole board was detected, and imputed the missing points in the board space
(section 5.5). Then, we tried extending the board points.

We used the obtained camera parameters to then project the imputed board
points into the image space.

4.4 Classifier

In this work, one of the methods we used was proposed by Geiger et al., 2012 as it
didn’t require the whole board to be visible, automatically determines the board’s
number of rows and columns and worked quite well on highly-distorted images.

In this work, we directly used the following steps from the algorithm:

1. Corner detection

2. Sub-pixel corner and orientation refinement

4.4. Classifier 15

4.4.1 Corner detection

(A) Corner prototype 1 (A, B, C, D) (B) Corner prototype 2 (A, B, C, D)

(C) Input image (D) Corner likelihood

FIGURE 4.1: Corner prototypes (Geiger et al., 2012)

According to Geiger et al., 2012, the following approach proved to be more robust
to image clutter and blur than other common choices (Harris and Stephens, 1988; Shi
and Tomasi, 2000).

To detect corners in a grayscale image I, the author used two n × n prototypes
for axis-aligned and 45◦ rotated corners, respectively. Each prototype is constructed
using four filter kernels {A, B, C, D} (fig. 4.1). The corner likelihood c at each pixel
is computed by:

c = max
(

s1
1, s1

2, s2
1, s2

2

)
si

1 = min
(

min
(

f i
A, f i

B

)
− µ, µ − min

(
f i
C, f i

D

))
si

2 = min
(

µ − min
(

f i
A, f i

B

)
, min

(
f i
C, f i

D

)
− µ

)
µ = 0.25

(
f i
A + f i

B + f i
C + f i

D

)
. (4.31)

Then, the authors apply the conservative non-maximum suppression to the re-
sponse map, and additionally filter the corners by assuring that there are two modes
of the gradient directions.

4.4.2 Classifier training

We tested the approach of Geiger et al., 2012, and, alternatively, the Hessian re-
sponses for the image, as proposed by Chen and G. Zhang, 2005.

To create a training dataset, we collected the true and false positives from the
corners we already detected.

For each of the detected corners on all images, we collected the values of the
response function at the previously detected corners, and around them. We didn’t
collect the values of all of the pixels, to reduce the number of very simple examples.

To determine the threshold for the classification, we used the ROC curve, and
found the threshold which maximizes the geometric mean of the true positive rate
and the false positive rate.

We used both approaches to train the classifier and compared the results in sec-
tion 5.6.

16

Chapter 5

Experiments

5.1 Simulator

We created a simulator to generate distorted points as described in section 3.2.7. We
used it to test the solver and test the correctness of projection and back-projection
points. However, since the simulator used the same camera model as the solver, the
initial camera calibration was perfect.

5.2 Metrics

As noted by Duisterhof et al., 2022, the evaluation of the camera calibration is not
straightforward. No ground truth exists for feature detection or camera calibration.

Typically, the reprojection error is used as a metric for the camera calibration, but
it depends on multiple factors: type of the calibration pattern, the camera model,
and the types of the lens.

As currently the algorithm only supports processing a single checkerboard, we
cannot compare to Duisterhof et al., 2022, which uses AprilTags, nor to the Lochman
et al., 2021, who provides the detected corners for all of the boards.

The paper’s main contribution is finding additional calibration boards’ features,
which then can be used as an input to any other camera calibration algorithm. The
measurements’ error is assumed to be Gaussian with zero mean and a constant vari-
ance (Hartley and Zisserman, 2004). As calibration process minimizes the geometric
distance between the projected and the measured points, it is equivalent to perform-
ing the maximum likelihood estimation (Hartley and Zisserman, 2004). As the num-
ber of the measurement grows, the estimated camera parameters converge to the
true values, hence adding additional measurements improves the calibration (espe-
cially from the edge of the image, where the distortion is the highest).

However, the above statement assumes that the measurements are true positives.
To evaluate that, we instead artificially removed some of the points from the de-
tections, to ensure that we can recover them. We also created artificially occluded
points by overlaying a separate image, as it poses problems for the feature detector.

Lastly, we evaluated the newly detected points on real-world datasets.

5.3 Dataset

For the project, we need highly distorted photos of calibration boards. It takes a
lot of work to generate such a dataset, as cameras which produce such images are
usually expensive. Therefore, it would be preferable to use an existing dataset.

For this project, we required a highly distorted dataset of chessboard images.
We collected several datasets, but the feature detector we used supports detecting

5.3. Dataset 17

only the boards with the constant tile size, therefore we cannot use AprilGrid nor
CharuCO boards. The feature detector is the only limiting factor.

Lochman et al. (2021) collected a wide number of datasets, typically used in the
field for the benchmarking of the camera calibration. They’re provided in a Deltille
Deltille Detector 2023 format, and are well documented.

Kalibr (Maye, Furgale, and Roland Siegwart, 2013) contains several established
datasets that are commonly used for testing the accuracy of camera calibration frame-
works: Double Sphere Usenko, Demmel, and Cremers, 2018, EuRoC Burri et al.,
2016, TUM VI Schubert et al., 2018, and ENTANIYA 1 Calibration of a 250deg Fisheye
Lens ů Issue #242 ů Ethz-Asl/Kalibr 2023. The Kalibr calibration framework was used
in the original publications cited above, hence the name of the dataset. As a calibra-
tion pattern, AprilGrid with 6×6 tags of 88 mm size was used. In total, the datasets
contain approximately 800 images.

OCamCalib (D. Scaramuzza, A. Martinelli, and R. Siegwart, 2006) is a dataset
of approximately 300 images. As a calibration pattern, the checkerboard pattern of
different sizes was used.

UZH (Are We Ready for Autonomous Drone Racing? The UZH-FPV Drone Racing
Dataset | Request PDF 2023) is a dataset of approximately 800 images collected using
the following cameras: As a calibration pattern, AprilGrid with 4×5 tags of 75 mm
size was used. The dataset contains approximately 800 images.

OV (Lochman et al., 2021) is a dataset of approximately 1400 images. It was col-
lected using eight stereo cameras. As a calibration pattern, the checkerboard pattern
with 9 × 6 tags of 22 mm size was used.

Duisterhof et al. (2022) also provide their dataset from the TartanCalib project.
Currently, the dataset contains only AprilGrid patterns, as the toolchain doesn’t sup-
port a chessboard.

(A) Kalibr (B) OCamCalib (C) OV

(D) UZH (E) TartanCalib

FIGURE 5.1: Images from the datasets

18 Chapter 5. Experiments

5.4 Camera calibration

To get accurate predictions for the possi-
bly missing points, we need very accurate
camera calibration. We used the reprojec-
tion error as a metric for the calibration
quality. To calculate the reprojection error,
we have to perform the rootfinding sec-
tion 3.2.6. We assume that all of the points
lay within the image, or they get out of
the borders a little bit (we use the constant
1.1 of the maximum radius). If the camera
calibration is poor, the root-finding might
fail. On the initial calibration the number
of failed root-findings was much higher.

254

80

458

Correctly detected
Reprojection error > 10
Not correctly detected

FIGURE 5.2: Initial calibration

658

19
115

Correctly detected
Reprojection error > 10
Not correctly detected

FIGURE 5.3: Final calibration

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5

0

20

40

60

80

100

Value

Fr
eq

ue
nc

y

FIGURE 5.4: Initial calibration’s reprojection error histogram

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5

0

100

200

Value

Fr
eq

ue
nc

y

FIGURE 5.5: Final calibration’s reprojection error histogram

5.5 Additional features detection

As discussed in section 4.3, we filled the gaps in the originally detected board points,
and then padded it for 1 additional element.

5.6. Classification 19

(A) Extended board, new points are marked as blue

0 5 10 15

0

5

10

15

x

y

Original board

0 5 10 15

0

5

10

15

x
y

Extended board

FIGURE 5.6: Board extension

5.6 Classification

We compared both re-
sponses, as discussed in
section 4.4. The Hessian
proved to be more robust.
The approach, proposed
by Geiger et al., 2012
gave too many false pos-
itives, especially for the
edges.

FIGURE 5.7: Hessian response

FIGURE 5.8: Response used by
Geiger et al., 2012

20 Chapter 5. Experiments

(A) Histogram of Hessian response (B) Histogram of response used by Geiger et
al., 2012

FIGURE 5.9: Distributions of the responses for the image on the sec-
tion 5.5. Note the log y-scale! Most of the points have the response 0.

5.7 Evaluation

5.7.1 Recovery of artificially removed points

We removed 20% of the points from the original board and then tried to recover
them.

0 60 120 180 240 300 360 420 480 540

0

50

100

Value

Fr
eq

ue
nc

y

Histogram of points before refinement

0 60 120 180 240 300 360 420 480 540

0
20
40
60
80

100

Value

Fr
eq

ue
nc

y
Histogram of points after refinement

(A) Recovered pruned points (unchanged filtered out new corner out of image)

FIGURE 5.10: Feature refinement on the board with 80% of the points

5.7. Evaluation 21

5.7.2 Performance under occlusion

Occlusions pose additional complications for feature detection. We added an image
on top of the board and tried to recover additional points. Often the initial feature
detector failed to detect points near the occlusion.

0 50 100 150 200 250 300 350 400 450

0

50

100

Value

Fr
eq

ue
nc

y

Histogram of points before refinement

0 50 100 150 200 250 300 350 400 450

0

20

40

60

80

Value

Fr
eq

ue
nc

y

Histogram of points after refinement

(A) Recovered pruned points (unchanged filtered out new corner out of image)

FIGURE 5.11: Feature refinement on the board with partial board oc-
clusion

22 Chapter 5. Experiments

5.7.3 Recovery of previously undetected points

Lastly, we recovered the points that were not detected by the initial feature detector.
From a visual inspection, most of the points were recovered correctly fig. 5.12. On
the top image, for example, there are green points close to the edge. Those corners
weren’t detected initially due to high distortion. On the bottom image, the algorithm
found another row of corners, which weren’t detected previously.

FIGURE 5.12: Recovered points (unchanged filtered out new corner
out of image)

5.7. Evaluation 23

However, because of the occlusions, or similar to the board patterns in the back-
ground, there were false positives (fig. 5.13). Many images didn’t have undetected
corners, hence it’s hard to make a general statement about the performance of the
feature detector solely based on this experiment (fig. 5.14.)

(A) Occlusion on the board with distinct features

(B) Similar pattern to the board in the background

FIGURE 5.13: Examples of false positives

0 2.5 5 7.5 10 12.5 22.5 25 30 47.5

100

101

102

Value

Fr
eq

ue
nc

y

FIGURE 5.14: Histogram of the newly recovered features

24

Chapter 6

Conclusions

In this thesis, we have presented a new approach for feature detection improvement.
We used the feature detector, proposed by Geiger et al., 2012, to detect the initial
features. Then, we found the camera calibration for the camera model, proposed
by Davide Scaramuzza, Agostino Martinelli, and Roland Siegwart, 2006, and then
improved it by minimizing the reprojection error between the back-projection of the
detected features and the board. Lastly, we used the improved camera calibration
to project the imputed and extended board back into the image and used a binary
classification to find the previously undetected features. We tested the method on a
real-world dataset and showed that it can improve the feature detection.

6.1 Future work

The method, presented in this thesis can be improved in several ways. First, the
feature detection algorithm can be tweaked to use alternating step sizes while con-
structing the board. It would allow to also match other types of the boars, such as
ArUco or AprilTag. Second, the method can be extended to multiple boards on the
same image, and multiple images. It would improve the robustness of the camera
calibration, and reduce the number of detected points on the wrong board when
there is overlap. Lastly, additional improvements can be made to the corner classifi-
cation algorithm, specifically to the response function. One thing that could work is
resizing the image, to find the corners of different sizes.

25

Bibliography

Are We Ready for Autonomous Drone Racing? The UZH-FPV Drone Racing Dataset |
Request PDF (2023). URL: https : / / www . researchgate . net / publication /
335144528_Are_We_Ready_for_Autonomous_Drone_Racing_The_UZH- FPV_
Drone_Racing_Dataset (visited on 01/30/2023).

Burri, Michael et al. (Jan. 25, 2016). “The EuRoC Micro Aerial Vehicle Datasets”. In:
The International Journal of Robotics Research 35. DOI: 10.1177/0278364915620033.

Calibration of a 250deg Fisheye Lens ů Issue #242 ů Ethz-Asl/Kalibr (2023). GitHub. URL:
https://github.com/ethz-asl/kalibr/issues/242 (visited on 01/30/2023).

Chen, Dazhi and Guangjun Zhang (Jan. 1, 2005). “A New Sub-Pixel Detector for X-
Corners in Camera Calibration Targets.” In: pp. 97–100.

Deltille Detector (Jan. 28, 2023). Meta Archive. URL: https://github.com/facebook
archive/deltille (visited on 01/30/2023).

Devernay, Frédéric and Olivier Faugeras (Aug. 1, 2001). “Straight Lines Have to Be
Straight”. In: Machine Vision and Applications 13.1, pp. 14–24. ISSN: 1432-1769. DOI:
10.1007/PL00013269. URL: https://doi.org/10.1007/PL00013269 (visited on
01/15/2023).

Duisterhof, Bardienus P. et al. (Oct. 5, 2022). TartanCalib: Iterative Wide-Angle Lens
Calibration Using Adaptive SubPixel Refinement of AprilTags. DOI: 10.48550/arXiv.
2210.02511. arXiv: 2210.02511 [cs]. URL: http://arxiv.org/abs/2210.02511
(visited on 01/05/2023). preprint.

Fitzgibbon, A.W. (Dec. 2001). “Simultaneous Linear Estimation of Multiple View Ge-
ometry and Lens Distortion”. In: Proceedings of the 2001 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. CVPR 2001. Proceedings
of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition. CVPR 2001. Vol. 1, pp. I–I. DOI: 10.1109/CVPR.2001.990465.

Fuersattel, Peter et al. (Mar. 1, 2016). “OCPAD Occluded Checkerboard Pattern De-
tector”. In: pp. 1–9. DOI: 10.1109/WACV.2016.7477565.

Garrido-Jurado, S. et al. (June 1, 2014). “Automatic Generation and Detection of
Highly Reliable Fiducial Markers under Occlusion”. In: Pattern Recognition 47.6,
pp. 2280–2292. ISSN: 0031-3203. DOI: 10.1016/j.patcog.2014.01.005. URL:
https://www.sciencedirect.com/science/article/pii/S0031320314000235
(visited on 01/05/2023).

Geiger, Andreas et al. (May 2012). “Automatic Camera and Range Sensor Calibra-
tion Using a Single Shot”. In: 2012 IEEE International Conference on Robotics and
Automation. 2012 IEEE International Conference on Robotics and Automation,
pp. 3936–3943. DOI: 10.1109/ICRA.2012.6224570.

Ha, Hyowon et al. (Oct. 1, 2017). “Deltille Grids for Geometric Camera Calibration”.
In: pp. 5354–5362. DOI: 10.1109/ICCV.2017.571.

Harris, C. and M. Stephens (1988). “A Combined Corner and Edge Detector”. In: Pro-
cedings of the Alvey Vision Conference 1988. Alvey Vision Conference 1988. Manch-
ester: Alvey Vision Club, pp. 23.1–23.6. DOI: 10.5244/C.2.23. URL: http://www.
bmva.org/bmvc/1988/avc-88-023.html (visited on 05/27/2023).

https://www.researchgate.net/publication/335144528_Are_We_Ready_for_Autonomous_Drone_Racing_The_UZH-FPV_Drone_Racing_Dataset
https://www.researchgate.net/publication/335144528_Are_We_Ready_for_Autonomous_Drone_Racing_The_UZH-FPV_Drone_Racing_Dataset
https://www.researchgate.net/publication/335144528_Are_We_Ready_for_Autonomous_Drone_Racing_The_UZH-FPV_Drone_Racing_Dataset
https://doi.org/10.1177/0278364915620033
https://github.com/ethz-asl/kalibr/issues/242
https://github.com/facebookarchive/deltille
https://github.com/facebookarchive/deltille
https://doi.org/10.1007/PL00013269
https://doi.org/10.1007/PL00013269
https://doi.org/10.48550/arXiv.2210.02511
https://doi.org/10.48550/arXiv.2210.02511
https://arxiv.org/abs/2210.02511
http://arxiv.org/abs/2210.02511
https://doi.org/10.1109/CVPR.2001.990465
https://doi.org/10.1109/WACV.2016.7477565
https://doi.org/10.1016/j.patcog.2014.01.005
https://www.sciencedirect.com/science/article/pii/S0031320314000235
https://doi.org/10.1109/ICRA.2012.6224570
https://doi.org/10.1109/ICCV.2017.571
https://doi.org/10.5244/C.2.23
http://www.bmva.org/bmvc/1988/avc-88-023.html
http://www.bmva.org/bmvc/1988/avc-88-023.html

26 Bibliography

Hartley, Richard and Andrew Zisserman (2004). Multiple View Geometry in Computer
Vision. 2nd ed. Cambridge: Cambridge University Press. ISBN: 978-0-521-54051-3.
DOI: 10.1017/CBO9780511811685. URL: https://www.cambridge.org/core/
books/multiple- view- geometry- in- computer- vision/0B6F289C78B2B23F
596CAA76D3D43F7A (visited on 05/28/2023).

Hu, Danying et al. (July 1, 2019). Deep ChArUco: Dark ChArUco Marker Pose Estimation.
DOI: 10.48550/arXiv.1812.03247. arXiv: 1812.03247 [cs]. URL: http://arxiv.
org/abs/1812.03247 (visited on 01/05/2023). preprint.

Kannala, Juho and Sami Brandt (Sept. 1, 2006). “A Generic Camera Model and Cal-
ibration Method for Conventional, Wide-Angle, and Fish-Eye Lenses”. In: IEEE
transactions on pattern analysis and machine intelligence 28, pp. 1335–40. DOI: 10.
1109/TPAMI.2006.153.

Krogius, Maximilian, Acshi Haggenmiller, and Edwin Olson (Nov. 2019). “Flexible
Layouts for Fiducial Tags”. In: 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 1898–1903. DOI: 10 . 1109 / IROS40897 . 2019 .
8967787.

Lochman, Yaroslava et al. (Oct. 28, 2021). BabelCalib: A Universal Approach to Calibrat-
ing Central Cameras. DOI: 10.48550/arXiv.2109.09704. arXiv: 2109.09704 [cs].
URL: http://arxiv.org/abs/2109.09704 (visited on 01/05/2023). preprint.

Maye, Jérôme, Paul Furgale, and Roland Siegwart (June 2013). “Self-Supervised Cal-
ibration for Robotic Systems”. In: 2013 IEEE Intelligent Vehicles Symposium (IV).
2013 IEEE Intelligent Vehicles Symposium (IV), pp. 473–480. DOI: 10.1109/IVS.
2013.6629513.

Olson, Edwin (May 2011). “AprilTag: A Robust and Flexible Visual Fiducial System”.
In: 2011 IEEE International Conference on Robotics and Automation. 2011 IEEE Inter-
national Conference on Robotics and Automation, pp. 3400–3407. DOI: 10.1109/
ICRA.2011.5979561.

OpenCV: Camera Calibration (2023). URL: https://docs.opencv.org/4.x/dc/dbb/
tutorial_py_calibration.html (visited on 01/15/2023).

OpenCV: Detection of ArUco Markers (2023). URL: https://docs.opencv.org/4.x/
d5/dae/tutorial_aruco_detection.html (visited on 01/15/2023).

OpenCV: Detection of ChArUco Boards (2023). URL: https://docs.opencv.org/3.4/
df/d4a/tutorial_charuco_detection.html (visited on 01/30/2023).

Pritts, James et al. (Nov. 1, 2021). “Minimal Solvers for Rectifying from Radially-
Distorted Conjugate Translations”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 43.11, pp. 3931–3948. ISSN: 0162-8828, 2160-9292, 1939-3539.
DOI: 10.1109/TPAMI.2020.2992261. arXiv: 1911.01507 [cs]. URL: http://
arxiv.org/abs/1911.01507 (visited on 01/05/2023).

Rosebrock, Adrian (Nov. 2, 2020). AprilTag with Python. PyImageSearch. URL: http
s://pyimagesearch.com/2020/11/02/apriltag- with- python/ (visited on
01/30/2023).

Scaramuzza, D., A. Martinelli, and R. Siegwart (2006). “A Flexible Technique for
Accurate Omnidirectional Camera Calibration and Structure from Motion”. In:
Fourth IEEE International Conference on Computer Vision Systems (ICVS’06), pp. 45–
45. DOI: 10.1109/ICVS.2006.3. URL: http://ieeexplore.ieee.org/document/
1578733/ (visited on 01/30/2023).

Scaramuzza, Davide, Agostino Martinelli, and Roland Siegwart (Oct. 1, 2006). “A
Toolbox for Easily Calibrating Omnidirectional Cameras”. In: IEEE International
Conference on Intelligent Robots and Systems. DOI: 10.1109/IROS.2006.282372.

https://doi.org/10.1017/CBO9780511811685
https://www.cambridge.org/core/books/multiple-view-geometry-in-computer-vision/0B6F289C78B2B23F596CAA76D3D43F7A
https://www.cambridge.org/core/books/multiple-view-geometry-in-computer-vision/0B6F289C78B2B23F596CAA76D3D43F7A
https://www.cambridge.org/core/books/multiple-view-geometry-in-computer-vision/0B6F289C78B2B23F596CAA76D3D43F7A
https://doi.org/10.48550/arXiv.1812.03247
https://arxiv.org/abs/1812.03247
http://arxiv.org/abs/1812.03247
http://arxiv.org/abs/1812.03247
https://doi.org/10.1109/TPAMI.2006.153
https://doi.org/10.1109/TPAMI.2006.153
https://doi.org/10.1109/IROS40897.2019.8967787
https://doi.org/10.1109/IROS40897.2019.8967787
https://doi.org/10.48550/arXiv.2109.09704
https://arxiv.org/abs/2109.09704
http://arxiv.org/abs/2109.09704
https://doi.org/10.1109/IVS.2013.6629513
https://doi.org/10.1109/IVS.2013.6629513
https://doi.org/10.1109/ICRA.2011.5979561
https://doi.org/10.1109/ICRA.2011.5979561
https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html
https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html
https://docs.opencv.org/3.4/df/d4a/tutorial_charuco_detection.html
https://docs.opencv.org/3.4/df/d4a/tutorial_charuco_detection.html
https://doi.org/10.1109/TPAMI.2020.2992261
https://arxiv.org/abs/1911.01507
http://arxiv.org/abs/1911.01507
http://arxiv.org/abs/1911.01507
https://pyimagesearch.com/2020/11/02/apriltag-with-python/
https://pyimagesearch.com/2020/11/02/apriltag-with-python/
https://doi.org/10.1109/ICVS.2006.3
http://ieeexplore.ieee.org/document/1578733/
http://ieeexplore.ieee.org/document/1578733/
https://doi.org/10.1109/IROS.2006.282372

Bibliography 27

Schaffalitzky, Frederik and Andrew Zisserman (Sept. 18, 1998). “Geometric Group-
ing of Repeated Elements within Images”. In: In Shape, Contour and Grouping in
Computer Vision LNCS 1681. ISSN: 978-3-540-66722-3. DOI: 10.5244/C.12.2.

Schöps, Thomas et al. (June 23, 2020). Why Having 10,000 Parameters in Your Camera
Model Is Better Than Twelve. DOI: 10.48550/arXiv.1912.02908. arXiv: 1912.
02908 [cs]. URL: http://arxiv.org/abs/1912.02908 (visited on 01/05/2023).
preprint.

Schubert, David et al. (Oct. 1, 2018). The TUM VI Benchmark for Evaluating Visual-
Inertial Odometry, p. 1687. 1680 pp. DOI: 10.1109/IROS.2018.8593419.

Shi, Jianbo and Carlo Tomasi (Mar. 3, 2000). “Good Features to Track”. In: Proceedings
/ CVPR, IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion. IEEE Computer Society Conference on Computer Vision and Pattern Recognition
600. DOI: 10.1109/CVPR.1994.323794.

Usenko, Vladyslav, Nikolaus Demmel, and Daniel Cremers (July 24, 2018). The Dou-
ble Sphere Camera Model.

V. Douskos, I. Kalisperakis, and G. Karras (2007). “Automatic Calibration of Digital
Cameras Using Planar Chessboard Patterns”. In.

Zhang, Z. (Nov. 2000). “A Flexible New Technique for Camera Calibration”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 22.11, pp. 1330–1334. ISSN:
1939-3539. DOI: 10.1109/34.888718.

https://doi.org/10.5244/C.12.2
https://doi.org/10.48550/arXiv.1912.02908
https://arxiv.org/abs/1912.02908
https://arxiv.org/abs/1912.02908
http://arxiv.org/abs/1912.02908
https://doi.org/10.1109/IROS.2018.8593419
https://doi.org/10.1109/CVPR.1994.323794
https://doi.org/10.1109/34.888718

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction and motivation
	Outline of the problem
	Research objective
	Thesis structure

	Related work
	Camera calibration
	Calibration boards
	Camera models
	Camera parameters estimation
	Boards' features detection

	Background
	Notation
	Camera model
	Perspective projection
	Scene to camera projection
	Camera to image projection
	Camera matrix
	Projection of the points from the scene plane
	Distortion
	Back-projection using the Division Model

	Complete projection and backprojection

	Approach
	Feature detection
	Camera calibration
	Reprojection error
	Initial approximation
	Solving for the camera extrinsic parameters
	Solving for the camera intrinsic parameters

	Optimization

	Additional features detection
	Classifier
	Corner detection
	Classifier training

	Experiments
	Simulator
	Metrics
	Dataset
	Camera calibration
	Additional features detection
	Classification
	Evaluation
	Recovery of artificially removed points
	Performance under occlusion
	Recovery of previously undetected points

	Conclusions
	Future work

	Bibliography

