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Abstract

The global problem this thesis aims to target is the inability of psychotherapists and
psychiatrists always correctly to identify a presence of a mental illness. To give a
constructive medical conclusion on a patient’s state, usually, it is not enough to only
rely on symptoms concluded from a therapeutic session. Moreover, the diagnosis
of that kind could be biased from both a therapist and a patient’s side. The former
depends on the doctor’s knowledge and experience, and the latter is based on an
ability to communicate the mental state. Notably, the more researchers investigate
the cause of psychiatric diseases, the more they make sure that mental illnesses are
developed due to specific changes in one’s brain. It could be the brain’s structure,
functionality, or damage, leading to changes in a person’s behavior, thought process,
interaction with other people, and sometimes difficulties in functioning as a healthy
human being. It is believed that severe mental illnesses and neurological and de-
velopmental diseases result from abnormal connectivity in a brain network. That
is why whole-brain functional connectivity is a significant source of information in
this study. In simple words, it represents if and how the brain regions communicate
with each other. This study presents generalized, usable, and reliable classification
models to identify a specific neurological or psychiatric disease, Autism Spectrum
Disorder and Schizophrenia, with 92.4% and 93.8% of accuracy respectfully, for fur-
ther clinical application of the developed tool.
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Chapter 1

Introduction

Recent studies on the detection rates of severe psychiatric diseases show that more
than a third of patients get misdiagnosed [4]. The most common ones are depres-
sion and bipolar disorder, following other disorders like ADHD and schizophrenia.
Major Depressive Disorder shows a 65.9% of misdiagnosis rate when the bipolar
disorder has around 92.7% [57]. In general, mental illnesses are hard to diagnose
correctly, especially considering that there is no medical test to detect the presence
of a particular disorder. The same works with neurological and developmental dis-
orders, like autism spectrum disorder. Identifying ASD can be complicated because
of the influence of many developmental factors outside of the ASD symptoms list. It
could be an influence of age or language level, as some of the developmental factors
[25].

To investigate the issue more profoundly, researchers have analyzed the corre-
spondence between a mental disorder and its physical representation or symptoms
on a physical level for the past several decades. According to the experimental re-
sults conducted during the past two decades, there is strong evidence that psychi-
atric and developmental disorders are dependent on the interactions between con-
nected neural systems rather than some damage to a specific brain region [19]. It
is also known that psychiatric diseases indicate problems in brain structure or its
abnormal functioning. As a result, a supportive method of proper diagnosis is to
ask specific questions about the patient’s brain. Depending on a question, there are
multiple techniques to use and non-invasive tools to investigate the brain. In this
research, we will work with resting-state fMRI as a primary source of information.
Functional MRI represents a brain’s functioning throughout time. Unlike structural
MRI, fMRI is used to determine the brain’s metabolic function. We used functional
connectivity derived from fMRI to understand the communication process among
brain parts better. Functional connectivity is a term that is used to represent a map
of inter-regional neural functional connections in the brain [3].

Studying the brain at rest, especially in analyzing the problems of psychiatric
disease diagnosis, is more valuable than task-based fMRI. First, the brain consumes
20% of energy, where around 60 − 80% is used to support communication between
cells. Task-evoked activity account for 1% of increase in regional activity [18]. Thus,
we can fully understand the brain’s functional organization using rs-fMRI because
the patterns that are aimed to support tasks are maintained at rest.

This work aims to develop an ASD and SCZ classifier based on whole-brain
functional connectivity, generalized across demographic information and some of
the other disorders. The classifiers could help to understand the reference among
mental illnesses, identify a presence of an abnormality, and observe inter-regional
relations responsible for proper differentiating between healthy controls (HC) and
ones with a disorder. The main challenges we have to face are reducing data di-
mensionality caused by the number of features per subject, getting rid of unwanted
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influence on the data, proper modeling and interpretation of classifiers, and gaining
knowledge in brain anatomy to understand the problem from a biological point of
view.
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Chapter 2

Background

2.0.1 Human brain and functional connectivity

It is often said that the brain is the most powerful and complex network globally.
It is still 30 times more potent than a supercomputer, even in the evolving world of
AI. About 100 billion (1011) of neurons are connected by around 100 trillion (1014)
synapses1. Moreover, it is not about the ability to calculate fast and not only about
computational resources. It is about a lot more opportunities for a human brain to
develop and a wide variety of options to degrade it.

Because a brain is a complex network, structurally separated regions are linked
together and are constantly communicating with each other. In mathematical terms,
it can be imagined as a graph with N nodes and E edges, where a single edge con-
tains information about the connection between two structural regions of the brain.
A graph itself is a N ∗ N adjacency matrix, in which zero and non-zero elements rep-
resent the absence and presence of a connection. The term for everything explained
above is called connectome or connectivity.

In most cases, researchers use functional Magnetic Resonance Imaging to obtain
any information about the functional relationships between regions (fMRI). It re-
flects the changes in signal as a response to particular experimental manipulation.
An fMRI experiment consists of a sequence of individual MR images, where we can
study oxygenation changes in the brain across time[18]. The most common approach
toward fMRI uses the Blood Oxygenation Level Dependent (BOLD) contrast. The
BOLD methodology enables us to identify which brain areas are more active than
the others at a certain point in time. Technically, more active areas of the brain tend
to receive higher levels of oxygenated blood.

Notably, MRI image contains information in a three-dimensional (3D) space. It is
composed of voxels. Voxel is a 3D unit of the image with a single value, the same as
a pixel for 2D[43]. Each voxel represents a spatial location and has an intensity asso-
ciated with it. The BOLD signal is obtained from a single voxel through time. Two
regions of the brain show functional connectivity if there is a statistical relationship
between the measures of activity recorded for them[17]. With the BOLD signals, one
can get a functional connectivity matrix, a correlation matrix of all the time series
extracted.

1Synapse - the site of transmission of electric nerve impulses between two nerve cells (neurons)[18].
Britannica, The Editors of Encyclopaedia. "synapse". Encyclopedia Britannica, 18 Feb. 2011,

https://www.britannica.com/science/synapse. Accessed 22 May 2022.
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2.0.2 Mental health and functional connectivity

Modern neuroscience demonstrates the relation between mental diseases and brain
abnormalities. Neuroscience also shows that severe psychiatric illnesses are associ-
ated with deviations in brain function, structure, and connectivity[30]. Functional
connectivity is currently a widely used information source for dealing with prob-
lems related to mental health. Understanding the large-scale brain networks such
as connectomes is gaining widespread acceptance. The questions of early diagnosis,
and treatment reliability testing, were targeted mainly by looking into specific brain
regions potentially responsible for a disease occurrence. Now it is known that psy-
chiatric disorders are usually associated with abnormalities throughout the brain,
which means it is not about a single region dysfunction[19].

With the development of the cognitive neuroscience field, which tries to answer
the question of how the brain as an organ triggers the mind; and with the founding
of new research fields like computational psychiatry, which aims to model the hu-
man brain in different diseases mathematically, an evolving interest of scientists to
connectomic techniques to understand brain network abnormalities in various men-
tal health issues occurs. This kind of curiosity around the topic has several reasons to
exist. They are reliability, sustainability, and relative non-complexity of the data[65].
As the research topic gains a high level of excitement among scientists, more dis-
orders are brought to the attention. The popular ones now are Parkinson’s disease,
ADHD, ASD, bipolar disorder, SCZ, MDD, and others. The ones we will concentrate
on in this research are Autism Spectrum Disorder and Schizophrenia.

Autism Spectrum Disorder

ASD is a neurodevelopmental disorder that affects how a person behaves, socializes,
and interacts with others and with the environment. The disease includes repeti-
tive behaviors that are especially noticeable during infancy and adolescence. Even
though there is no available cure for ASD, doctors develop intensive treatments that
can lead to tremendous changes in one’s behavior and life.

There were studies directed to investigate the development of a brain of a per-
son with ASD throughout lifetime[23]. Analysis of a structural MRI showed that
there are abnormalities in gray2 and white3 matter when comparing Healthy Con-
trols (HCs) and patients with ASD. As was mentioned before, region-specific ex-
periments demonstrate differences between HC and ASD, but it is also essential to
include whole-brain network analysis to observe an entire picture[58]. Hence, recent
research on that topic enlightens the ASD brain from the structural and functional
connectivity that covers the entire cerebral cortex4. From an FC standpoint, subjects
with ASD show increased FC in some of the areas[61], whereas there are also studies
depicting an opposite finding suggesting a presence of so-called underconnectiv-
ity[29].

2Neural tissue, especially of the brain and spinal cord that contains nerve-cell bodies as well as
nerve fibers and has a brownish-gray color.

“Gray matter.” Merriam-Webster.com Dictionary, Merriam-Webster, https://www.merriam-
webster.com/dictionary/gray%20matter. Accessed 24 May. 2022.

3Neural tissue, especially of the brain and spinal cord that consists mainly of myelinated nerve
fibers bundled into tracts, has a whitish color and typically underlies the cortical gray matter.

“White matter.” Merriam-Webster.com Dictionary, Merriam-Webster, https://www.merriam-
webster.com/dictionary/white%20matter. Accessed 24 May. 2022.

4Outermost layer of the brain consisting of convoluted gray matter.
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Schizophrenia

Schizophrenia is one of the severe mental illnesses which affects how a person thinks
and feels. The most common associations with SHZ are loss of reality and halluci-
nations that result in constant misunderstanding among family and friends. SHZ is
considered a neurodevelopmental disorder and ASD, but they still have some dif-
ferences. Unlike ASD, SHZ is usually diagnosed between the ages of 16 and 30,
when the first episode of psychosis5 comes into play. The symptoms are not only
present during episodes but throughout daily life. These include loss of motivation,
withdrawal from social life, and difficulty showing emotions[40].

The investigation of structural brain changes in schizophrenia exposes the ability
to detect the shifts in gray and white matter. A breakthrough is that the structural
changes can occur even prior to the onset of clinical symptoms, which can lead to
early detection and treatment and prevent a disease from progressing[16]. Concern-
ing FC analysis, people with schizophrenia possess less firmly integrated functional
connectivity compared with HCs[36, 34].

2.1 Literature review

2.1.1 ASD classification related works

Today, there are already many works dedicated to mental disorders diagnosis. Dif-
ferent research teams work with different data. The datasets vary from answers to
a questionnaire and demographical data as a relevant information resource to non-
invasively gathered signal data from the brain. The most popular ones today are
EEG and fMRI data.

To approach the question of ASD diagnosis prediction, Altay and Ulaş [1] re-
search team developed classification models, specifically Linear Discriminant Anal-
ysis Classifier (LDA) and K-Nearest Neighbors (KNN), basing their learning on the
response data obtained from a mobile application for ASD diagnosis. The results
obtained have 90.8% and 88.5% of accuracy based on the situational questions[1].
The data of that type was also used along with the Support Vector Machine (SVM)
classifier, getting valuable accuracy results as well[6]. Even though the classifying
models may be accurate, well-projected, generalized, and adequately validated, this
assessment is more valid in terms of the behavioral part of human life. However, it
does not analyze the physical core of a disease.

One of the most recent studies on ASD classification using resting-state func-
tional connectivity[63] developed a kernel SVM based on Autism Brain Imaging
Data Exchange (ABIDE) fMRI data with gaining 69.43% of accuracy as the most
optimal result. It is important to note that the team performed a reasonable amount
of testing throughout their development pipeline, starting from choosing brain par-
cellation6 technique up until Machine Learning (ML) model selection.

The other reference ASD classification study involves the application of Deep
Learning techniques. They also worked on the ABIDE dataset and achieved 90.39%

5Conditions that affect the mind, where there has been some loss of contact with reality.
National Institute of Mental Health (2021). Understanding Psychosis. Retrieved May 24, 2022, from

https://www.nimh.nih.gov/sites/default/files/documents/health/publications/understanding-
psychosis/20-mh-8110-understandpsychosis.pdf.

6Defines distinct partitions in the brain, be they areas or networks that comprise multiple discon-
tinuous but closely interacting regions.

Eickhoff, S.B., Yeo, B.T.T. Genon, S. Imaging-based parcellations of the human brain. Nat Rev Neu-
rosci 19, 672–686 (2018). https://doi.org/10.1038/s41583-018-0071-7



Chapter 2. Background 6

of accuracy and an area under the curve (AUC) of 0.9738. Comparing the results to
other works on the same dataset, their model achieved the best results almost in all
of the metrics[32].

Finally, the research done on the dataset used in this thesis presented an ASD
classifier performing with 85% of accuracy and covering 0.93 AUC. The classifier
was developed to generalize it with correspondence to demographical data, such
as age, sex, site7, and others. The generalization was also tested regarding other
psychiatric diseases, like SCZ, MDD, and ADHD. They discovered that the classifier
could differentiate SCZ from HC but performs worse on MDD and ADHD[62].

2.1.2 Schizophrenia classification related works

There are much fewer potentially dependent research papers on SCZ classification
based on functional connectivity compared to ASD. However, some of them provide
essential information on the possibilities of approaching such problems. One of the
latest works related to SCZ classification was working with EEG functional connec-
tivity [5]. The feature selection process was based on graph metrics like degree8,
strength9, and others. A Logistic Classifier with 10-fold cross-validation was tested
and compared at different frequency bands of a signal.

Works on discriminative analysis of functional connectivity of fMRI and its ap-
plication in SCZ diagnosis were brought to attention in Shen et al. [51]. The team
implemented a classifier based on C-Means clustering 10 obtaining experimental re-
sults of 93.75% and 75% of accuracy for SCZ patients and healthy controls respec-
tively[51]. The feature selection part used a correlation coefficient method to extract
highly discriminative regions that reduced the number of features up to only 2.24%
of all FCs. One of the significant concerns regarding the work mentioned above is
the number of subjects used for training and prediction. It consists of 32 patients
and 20 healthy controls. A small dataset usually leads to an inability to generalize
the model and project it onto real-life problems.

One of the latest research on SCZ detection based on rs-FC deals with the multi-
site problem and presents a Deep Learning classifier with the accuracy of approx-
imately 85%[64]. A research team used multi-atlas for brain region separation in
functional connectivity extraction. As a result, they measured the FC of the same
image in different spaces of several atlases. The final classifier was constructed with
three hidden layers and 100 nodes in each of them. The study also provides compar-
ison results with other classifiers’ performance.

7Refers to a location where fMRI scan was used to measure the brain activity of a subject.
8Number of edges connected to a node.
9A weighted variation of degree is the sum of all the neighboring link weights for each node.

10Algorithm is creating k numbers of clusters, assigning each data point to each cluster, and defining
how strongly the data belongs to that cluster based on the distance to the cluster center.
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Chapter 3

Methodology

3.1 Data

3.1.1 Dataset description

The dataset we are working with in this work is a multi-site, multi-disorder resting-
state Magnetic Resonance Image database[54]. The database consists of rs-fMRI and
structural images of the brain of 993 patients and 1, 421 healthy controls, along with
demographic information like age, sex, handedness, and specific to the subject’s clin-
ical assessments. There are four major datasets with different data restrictions and
consistency levels. The one we used in our study is the SRPBS Multi-disorder Con-
nectivity Dataset. The data were collected from 15 different scanners and eight sites.
The data itself is resting-state functional connectivity of each subject and participant
demographic information.

3.1.2 Functional Connectivity from raw fMRI

Preprocessing of raw fMRI data and rs-FC calculation was performed in the scope
of SRPBS Multi-disorder Dataset creation. rs-fMRI data was preprocessed using
SPM8[20], software implemented in MATLAB. It is an academic software for the
analysis of functional imaging data[55]. As described in the paper, SPM8 prepro-
cessing steps included slice-timing correction, realignment, co-registration, segmen-
tation of T1-weighted structural images, normalization to Montreal Neurological In-
stitute (MNI) space, and spatial smoothing with an isotropic Gaussian kernel of 6mm
full width at half maximum (FWHM).

After the standard approach to rs-fMRI preprocessing and getting rid of the
noise, they split the brain into 140 regions of interest (ROIs). ROIs were defined
anatomically by Brainvisa Sulci Atlas[14] and three sub-regions of the cerebellum1

(the left and right cerebellum, and the vermis2). The brain parcellation is depicted
in figure 3.1. A full region naming is present in Appendix C (C.2, C.1).

Then BOLD signals extracted from those regions were put through a bandpass
filter (0.008 − 0.1Hz). Notably, to generate a BOLD time series per region, the BOLD
signal was extracted from each voxel and then averaged as by brain segmentation

1A large dorsally projecting part of the brain concerned especially with the coordination of muscles
and the maintenance of bodily equilibrium.

“Cerebellum.” Merriam-Webster.com Dictionary, Merriam-Webster, https://www.merriam-
webster.com/dictionary/cerebellum. Accessed 31 May. 2022.

2The constricted median lobe of the cerebellum that connects the two lateral lobes.
“Vermis.” Merriam-Webster.com Dictionary, Merriam-Webster, https://www.merriam-

webster.com/dictionary/vermis. Accessed 31 May. 2022
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FIGURE 3.1: BrainVisa Atlas[14].

procedure applied. The next step was to regress out confounds which included tem-
poral fluctuations of the white matter, the cerebrospinal fluid, and head motion pa-
rameters.

As a result, each subject was attached to 140 ROIs signals that were then pair-
wise correlated to each other using Pearson correlation:

r = ∑(xi − x̄)(yi − ȳ)√
∑(xi − x̄)2 ∑(yi − ȳ)2

The output correlation matrix was vectorized to form a lower-triangular matrix con-
sisting of 9, 730 functional connections. Based on the previous research[45], they
calculated the framewise displacement 3 and removed volumes with FD > 0.5mm.

Finally, the outcome of the preprocessing pipeline was flattened FC matrices with
m = 9, 730 features per subject.

3.1.3 SCZ and ASD functional connectivity data

To analyze SCZ and ASD data, we retrieved two main sub-datasets from the general
one to balance out HCs and patients in amount of data points. We performed a
similarity search to balance the data across subjects regarding demographic data like
age and gender. It was made by calculating a pair-wise distance between vectors
using normalized Euclidean distance. Normalized Euclidean distance helped deal
with features having different variations, meaning one of the features (sex) was a
binary one, and the other (age) was continuous.

NED =

√
∑

s

(
As

|A| −
Bs

|B|

)2

In the above equation, s denotes the subject’s number, and As and Bs represent
the age and sex of each subject, respectively. Similar healthy control was selected for
each ASD or SCZ patient depending on the measure. The following datasets were
obtained.

3This measure indexes the movement of the head from one volume to the next and is calculated as
the sum of the absolute values of the differentiated realignment estimates at every timepoint.[44]



Chapter 3. Methodology 9

TABLE 3.1: SCZ dataset demographics.

SCZ / HC Sex Age Site

HC male 85
female 61

42.5±24.5 KyotoU 98
HiroshimaU 33
OsakaU 3
ShowaU 1
CiNet 7
UTO 4

SCZ male 85
female 61

41.5±25.5 KyotoU 92
ShowaU 19
UTO 35

TABLE 3.2: ASD dataset demographics.

ASD / HC Sex Age Site

HC male 109
female 16

36.5±16.5 HiroshimaU 15
KyotoU 85
OsakaU 2
ATR 8
ShowaU 8
UTO 4
CiNet 3

ASD male 109
female 16

37±17 ShowaU 115
UTO 10

3.2 FC selection for the classifier

Feature selection is the next major step in our data preparation. The FC dataset
used in this study presents 9, 730 functional connections per subject. We also have to
consider the number of subjects we have, much lower than the number of features
per subject. The problem is dealing with a so-called curse of dimensionality where
n << m, where n is a number of subjects, and m is a number of features. In most
cases, Machine Learning problems assume n >> m because otherwise, it can cause
overfitting. That is because some of the predictors are noise variables, so the model
cannot be validated correctly in future dataset[67]. We applied and validated several
dimensionality reductions and feature selection techniques to tackle this problem.

3.2.1 Dimensionality reduction

Reducing amount of variables can be split into two main approaches. One of them
keeps the most relevant features given in the dataset but does not modify an input.
This approach is called feature selection. The other one is selecting a smaller set
of features that contain the same information as input data, usually using a linear
combination of the given variables. It is called dimensionality reduction.

Dimensionality reduction, especially in neuroimaging data, is one of the essen-
tial steps to successfully building a robust and non-overfitting ML model. According
to the recent study on feature extraction methods comparison in resting-state func-
tional connectivity, the best dimensionality reduction methods were Principal Com-
ponent Analysis (PCA) and Independent Component Analysis (ICA). The validity
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of the methods was tested on rs-FC of stroke patients predicting ability of neuropsy-
chological scores[9].

PCA

The main idea behind Principal Component Analysis (PCA) is to reduce the dimen-
sionality of the data and, at the same time, keep as much variability present in the
dataset as possible. PCA algorithm linearly transforms the dataset into a smaller
amount of variables, principal components (PCs), that are uncorrelated and sorted
in the way that the first ones retain most of the variance.

The main intention in PCA is to perform matrix decomposition of m by n matrix
X with m features and n subjects, such that

X = USVT

where U is m by m matrix and UTU = I, V is n by n matrix and VTV = I, and S is
an m by n singular-value matrix. V is a matrix containing the eigenvectors4 of XTX.
To decompose matrix X, we need to find the eigenvalues5 and eigenvectors of XTX.
Applying singular value decomposition, we get

XTX = VSTUTUSVT = VSTSVT

where STS results into n by n zero-valued matrix except having eigenvalues of XTX
on its diagonal.

XTXV = VSTSVTV = VSTS

V is a matrix of eigenvectors, or in other words, principal components. Hence,
we can conclude that

XTXvk = λkvk

where λk is k-th eigenvalue and vk is an eigenvector of XTX. The components are
sorted by importance, that is why the highest value λk has, the more important vk is
for describing the data variance[42].

In our work, we performed the PCA reduction method in the way that at least
80% of variance is explained by the reduced data. The maximum we tried to sustain
was 95% of information described by the output from PCA. We iteratively increased
the percentage by 5% to find the most convenient choice of variables. Before the
PCA application, the data was centered on a zero mean.

ICA

Another one of the most widely used dimensionality reduction techniques is In-
dependent Component Analysis (ICA). An important difference between PCA and

4A nonzero vector that is mapped by a given linear transformation of a vector space onto a vector
that is the product of a scalar multiplied by the original vector.

“Eigenvector.” Merriam-Webster.com Dictionary, Merriam-Webster, https://www.merriam-
webster.com/dictionary/eigenvector. Accessed 27 May. 2022.

5A scalar associated with a given linear transformation of a vector space.
“Eigenvalue.” Merriam-Webster.com Dictionary, Merriam-Webster, https://www.merriam-

webster.com/dictionary/eigenvalue. Accessed 27 May. 2022.
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ICA is that PCA transforms the data into a set of uncorrelated6 variables, when ICA
looks for independent7 factors.

To understand the process of ICA, we can look at the statistical latent variables8

model. Let’s assume that we observe x1, x2, ..., xn such that

xj = aj1s1 + aj2s2 + ...ajnsn

The xj variables are observable, when sk are independent components. Let’s as-
sume x is a random vector of elements x1, x2, ..., xn, and s is a random vector of
elements s1, s2, ..., sn. Let’s also introduce a matrix A which elements are aij. Then
the ICA statistical model can be represented as

x = As

The ICA model is a generative model, which means that it explains how the
observed data are generated by mixing the components si. As was mentioned before,
the independent components obtained are latent variables, which means they cannot
be observed. At the same time, matrix A is unknown. That is why the main goal is
to estimate the matrix and independent components vector. As soon as we estimate
the matrix, we can get an independent components set[26].

s = A−1x

Before the ICA application, the input dataset was centered and whitened9[10].
After that, we iteratively estimated the results of choosing from 10 to 30 independent
components with 5 components step.

3.2.2 Feature selection

Random Forest feature selection

Random Forest ML algorithm is popular in applying supervised regression and clas-
sification problems. It is one of the most widely used algorithms because of its sim-
plicity, low overfitting rates, and good performance. In general, the algorithm uses
many decision trees built based on random subset selection from the dataset. For
classification problems, it then uses the majority vote to decide on the test observa-
tion result. An important fact is that the features used to train Random Forest are
split randomly into particular decision trees, which means not all trees get the same
feature set. Notably, each tree is a particular sequence of yes-no questions based on
selected features.

As decision trees build, one has to decide which feature will be considered next
in the data subset on each step. To select a feature for splitting, Gini Index is used
in classification models. It measures an impurity of the split. A pure split is getting
either "yes" or "no". Gini Index can be calculated as follows:

GI = 1 −
n

∑
i=1

(Pi)
2 = 1 −

[
(P+)

2 + (P−)
2
]

(3.1)

6There is no linear relation between the variables.
7Not dependent on other variables.
8A variable that cannot be observed.
9Data transformation to make it have a covariance matrix as an identity matrix (1 on the diagonal,

0 otherwise)
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Where P+ is the probability of a positive class and P− is the probability of a
negative class[47]. This reflects how much impurity a node has.

To calculate the node’s importance, we use

nij = wjCj − wle f t(i)Cle f t(j) − wright(j)Cright(j)

where nij is the importance of node j, wj is a weighted number of samples reaching
node j, Cj reflects the impurity value of node j, le f t(j) and right(j) is a child node
from left and right split on node j respectively.

Feature importance on a single decision tree is calculated using

f ii =
∑j:node j splits on f eature i nij

∑k∈allnodes nik

Then each feature importance value is normalized by dividing the calculated f ii
by the sum of all feature importance values and is equal to norm f ii. To generalize
the feature importance score across all of the decision trees involved in a Random
Forest algorithm, the last step is to average the f ii score among all of the trees. This
is done as

RF f ii =
∑j∈all trees norm f iij

T

where norm f iij is a normalized feature importance for i in tree j and T equals a total
number of trees[31].

Backward feature elimination

Backward feature elimination is much simpler from a mathematical standpoint in
comparison to the ones discussed above. The first step is to take all m features from
the input dataset and train a model on them. The model we have chosen to deal
with is Logistic Regression (see Logistic Regression explanation in 3.4.1), one of the
standard classifier models. Then we calculate the performance of the model. After
that, we recursively take out one feature, so there would be one feature less than
during the previous run at each iteration. During the process of elimination, we
identify the variable that did not influence the model’s performance after its removal
and drop the variable. We repeat this process until the variables can no longer be
removed. That would mean that we reached our desired number of components[24].

Forward feature selection

The forward feature selection method is the opposite of the backward feature elim-
ination approach. The naming says by itself that in forward feature selection, we
select new features, and in backward feature elimination, we get rid of them.

The algorithm starts with training a model with a single feature. Our model is
trained m times during the first step. The variable that gives the best performance is
selected as a starting point for adding one more variable. The feature that influences
a model’s performance is selected to be kept in further steps. The process is repeated
until there is no significant change in a model’s performance[24].
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3.3 Confound Regression

3.3.1 A problem of nuisance variables

Nuisance variables, or confounding variables, are some factors that influence the
independent variable within an experimental study but are not of research interest.
It introduces bias to analyzing data. Usually, when dealing with medical data, con-
founding variables are demographic, like age, gender, and ethnicity. Sometimes they
also include the presence of a treatment or tool specifications’ bias that was used to
perform clinical tests. In fMRI data, the confound variables are also the scanner
parameters, experiment setup, and imaging conditions.

3.3.2 Confound regression approach

One of the most common ways of controlling confounds in the dataset is to remove
the variance explained by a confound. That is called confound regression[52], which
means that we regress out the influence of an unwanted variable. This method con-
sists of fitting a linear regression model on each feature of the data (FC) with the
confounds as predictors.

We constructed a confound matrix C to identify the relationships between de-
mographic data and each feature from the FC matrix. The variables we consider
to nuisance are age, sex and site. The number of columns in matrix C is 11, that
is p = 11. First column represents age, which is a continuous variable. The next
column is sex containing 1 as male and 0 as female. The next 8 columns contain in-
formation about the site in a form of [1 0 0 0 0 0 0 0 0] for site 0, [0 1 0 0 0 0 0 0 0] for
site 1, [0 0 1 0 0 0 0 0 0] for site 2 and so on. The last column is either 1 (ASD / SCZ)
or 0 (HC). As a result, each feature is modelled as a linear function of confounding
variables in the following way:

Xi = Cβi + ϵ

where Xi is a single feature vector for n subjects, C is a n by p confound matrix,
where p is an amount of confound variables we consider.

To estimate the parameters β̂i for a feature Xi we use ordinary list squares as
follows:

β̂i =
(

CTC
)−1

CTXi

To regress the confounds from the data, we subtract the variance associated with
a confound from the original data.

Xi,corr = Xi − Cβ̂i

Xi,corr represents a feature vector Xi where the variance associated with con-
founds was removed. It is important to note that the influence of a disease label
is not considered in regressing out the variance, which means the ˆβi,disease is auto-
matically set to 0.
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3.4 Machine Learning models

3.4.1 Mathematics behind ML models

Logistic Regression

Logistic Regression is one of the most common classifying ML models. It predicts a
binary outcome based on a probability of an observation appearing either in the first
or second group. Because Logistic Regression is a linear classifier, it uses a linear
function called logit.

f (x) = b0 + b1x1 + ... + bmxm

A core of Logistic Regression is a sigmoid function, which predicts the probabil-
ity.

sigmoid(x) =
1

1 + e− f (x)
(3.2)

Model training is based on maximizing the log-likelihood function for all ob-
served data.

LLF = ∑
i
(yilog(sigmoid(xi)) + (1 − yi)log(1 − sigmoid(1 − xi))

In ML, it is conventional to work with log-loss minimization using gradient de-
scent rather than maximizing an objective function. The negative value of LLF is a
cost function we want to minimize. Mathematically

−LLF = −∑
i
(yilog(sigmoid(xi)) + (1 − yi)log(1 − sigmoid(1 − xi))

where yi represents a class and log(sigmoid(xi)) represents a probability mea-
sure[2].

Ridge

In general, Ridge, Lasso, and Elastic Net models are called Regularized Regression
models. They are developed to eliminate the sparsity and overfitting problem when
the model performs well on train data but fails to do as well on unseen data. A
regression vector is sparse of only some of its components are nonzero while the
rest is set to zero[7]. This type of model aims to reduce variance by introducing
some bias. Ridge, for instance, reaches regularization by reducing the importance
of some features, whereas Lasso completely blocks the importance given to some of
them[41]. In Ridge regression, the OLS loss function penalizes the size of parameter
estimates and is also called the L2 regularization model[39].

Lridge(β̂) =
n

∑
i=1

(yi − x
′
i β̂)

2 + λ
m

∑
j=1

β̂2
j = ||y − Xβ̂||2 + λ||β̂||2

Here λ factor is controlling the strength of the penalty. This parameter is often
tuned using the cross-validation technique. The main impact on the model’s better
performance is caused by adding a shrinkage estimator, meaning all of the coeffi-
cients are shrunk by the same factor so that none of them are dropped.
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Elastic Net

Elastic Net model is a combination of Ridge and Lasso ones, where the penalty term
is added to a loss function from both of them. The main advantage of Elastic Net is
that because of combination of two different penalties it allows to cover up limita-
tions of both methods[68]. Therefore, Elastic Net minimizes the following function:

Lenet(β̂) =
∑n

i−1(yi − x
′
i β̂)

2

2n
+ λ

(
1 − α

2

m

∑
j−1

β̂2
j + α

m

∑
j−1

|β̂ j|
)

where λ and α are parameters regularizing the penalization strength.

Decision Tree

A decision tree algorithm is a supervised model operating on a tree datatype. The
root node is the beginning of a decision tree, and it is the first feature that starts split-
ting the data. Decision nodes are responsible for preserving conditional information
about the further split. The next split would be based on the decision node. A leaf
node is the one that makes a final decision, and no splitting then is possible[12]. As
was mentioned before, the selection of features is based on a purity measure (3.1).

FIGURE 3.2: Decision Tree template[12].

Support Vector Machine

Support Vector Machine (SVM) is a linear ML algorithm primarily used for solving
classification problems; that is also known as Support Vector Classification. In the
case of binary classification, we refer to SVM as a problem of finding a hyper-plane
so that it divides the n-dimensional data into two separate groups. The goal of the
SVM algorithm is to choose an optimal hyper-plane, and here support vectors come
into play.

A black line in the above figure is an optimal hyper-plane, whereas the dotted
lines are two other planes that pass through the nearest data points to the optimal
one. The area with no points (the one between two dotted hyper-planes) is called
the margin, and the closest points to an optimal hyper-plane are known as support
vectors. The equation for a hyperplane is

H : wT(x) + b = 0
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FIGURE 3.3: SVM linearly-separable example[56].

The primary goal of SVM is to maximize margin so that the model can be gener-
alized well on the training dataset and perform better on unseen data. For that, we
would like to present a distance measure from a given point vector to a hyperplane
as

dH(ϕ(x0)) =
|wT(ϕ(x0)) + b|

||w||2

where ϕ(x0) is a point vector and ||w||2 is a Euclidean norm given by

||w||2 =
√

w2
1 + w2

2 + ... + w2
n

To find a hyperplane with the maximum margin, we must maximize the mini-
mum distance to the closest points (support vectors). The objective function becomes

w∗ = argwmax[minndH(ϕ(xn))] = argwmax
1

||w||2
, s.t. minnyn[wTϕ(xn) + b] = 1

(3.3)
In most cases working with real-life data, the data points are not linearly separa-

ble. Making non-linearly separable data into linearly separable ones is a kernel trick.
The kernel is a function responsible for projecting data to a higher dimensional space
where linear separation becomes possible. It can be expressed as an inner product
in another space. The kernel is usually defined as a feature map:

ω : ϕ → ψ

that satisfies
k(x, x

′
) = (ω(x), ω(x

′
))ψ

Kernel plays an important role in so-called dual form of the objective function.
Dual form differs from the primal form (3.3) by using different variables to serve the
same purpose[15].
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K-nearest Neighbors

KNN algorithm is developed in the way that it finds the closest point in a given
dataset to the input point. Using Euclidean distance measure, it determines the
neighbors and the input point distance to them. The distance metric is

d(x, x
′
) =

√
(x1 − x′

1)
2 + ... + (xn − x′

n)
2 (3.4)

The input point gets assigned to a class by calculating the probability of appear-
ing in that class.

P(y = j|X = x) =
1
K ∑

i
I(y(i) = j)

A value K is a hyperparameter that denotes an amount of nearest neighbors
to which the distance is measured during the process of input point class assign-
ment[66].

Gaussian Naive Bayes

Naive Bayes is a classification algorithm that is based on Bayes’ theorem. It calcu-
lates the probability of an entry observation being assigned to each class, and the
one with the highest probability is a predicted class. The Bayes rule states

P(C = i|X = x) =
P(X = x|C = i)P(C = i)

P(X = x)

P(X = x) is identical for all the classes, so that it can be omitted. Hence, the
Bayes classifier

h∗(x) = arg maxiP(X = x|C = i)P(C = i)

that finds the maximum posterior probability given an observation x. Usually, P(X =
x|C = i) is hard to calculate because of the high dimensionality of the data, which is
why it is rather approximated than directly estimated. It is performed by assuming
that all of the features are independent in a given feature vector[48]. That is why the
objective function to maximize is

f NB
i (x) =

n

∏
j=1

P(Xj = xj|C = i)P(C = i)

XGBoost classifier

Gradient Tree Boosting is one of the techniques in ML that show excellent results
in a lot of different applications. At every iteration, a base learner10 is fit to the
negative gradient performing gradient descent on the loss function. XGBoost is a
model that consists of a collection of base learners, and the model is trained in an
additive manner[13]. The loss-function at iteration t we want to minimize is

10Is usually generated from training data by a base learning algorithm which can be a decision tree,
neural network, or other kinds of ML algorithms.

Zhou ZH. (2009) Ensemble Learning. In: Li S.Z., Jain A. (eds) Encyclopedia of Biometrics. Springer,
Boston, MA. https://doi.org/10.1007/978-0-387-73003-5293
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L(t) =
n

∑
i=1

l
(

yi, ŷ(t−1)
i + ft(xi)

)
+ Ω( ft)

where
Ω( f ) = γT +

1
2

λ||w||2

Here yi is a true label from the training dataset, and Ω is responsible for penaliz-
ing the complexity of the model. The objective function cannot be optimized using
traditional methods in Euclidean space[13], so the Taylor expansion to calculate the
value of a loss function for the base learners. Briefly, Taylor Series is used to ap-
proximate a function based on first, second, third, and so on, derivatives, and the
factorial.

Artificial Neural Networks

Artificial Neural Networks (ANNs) are computational models whose structure and
logic were inspired by the brain’s biological structure. That is why ANNs consist of
many connected nodes, or in other words, neurons that perform a particular mathe-
matical operation. It also looks like directed graphs, where each node is responsible
for a particular calculation, the output of which then is passed to the next connected
node. This process is called an activation. It is usually represented as f (z), where z
is an aggregation of all the input. The activation functions are either linear or non-
linear, where linear follows the concept of f (z) = z, and others perform a special
transformation.

The most popular activation functions are Rectified Linear Units (ReLU), sig-
moid activation (3.2) and tanh. With ReLU, we make sure that the output is not
going below zero, meaning

fReLU(z) = max(0, z) (3.5)

FIGURE 3.4: Artificial neuron example[50].

In the above figure there is a function

f

(
b +

n

∑
i=1

xiwi

)
(3.6)
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where b is a bias term, x is an input to a neuron, w are weights, n is the number of
inputs from the incoming layer.

ANNs learn based on two major concepts - backpropagation and optimization.
Backpropagation computes the gradient of the loss function with respect to the weights.
Weights are connections between neurons that carry a value, and the higher the
value, the more importance is dedicated to a neuron on the input side. Gener-
ally, cross-entropy is used as a loss function for solving classification problems with
ANNs. On the other hand, optimization is the selection of the best element from a
given set of variables’ alternations. Mainly it is about choosing the best weights for
the model.

3.4.2 Evaluation metrics

Accuracy

Accuracy is the fraction of predictions our model got right. For binary classification
problems, it is calculated in terms of positives and negatives[37].

Accuracy =
TP + TN

TP + TN + FP + FN
(3.7)

where TP = True Positives, TN = True Negatives, FP = False Positives, and FN =
False Negatives.

Recall and precision

Precision and recall are the measures that use the same concept as accuracy, but those
metrics work well on imbalanced datasets.

Precision =
TP

TP + FP
(3.8)

Precision =
TP

TP + FN
(3.9)

Precision shows the proportion of positive identifications that were actually cor-
rect. Recall depicts the proportion of actual positives that were identified correctly[37].

F-1 score

In binary classification, the F-1 score measures test accuracy calculated from the pre-
cision and recall. The score represents a harmonic mean of precision and recall[37].

F1 =
2

recall−1 + precision−1 = 2
precision · recall

precision + recall
=

TP
TP + 1

2 (FP + FN)
(3.10)

Pseudo R-Squared

For binary classification problems, OLS R-squared is not suitable because of dealing
only with continuous predictions. Classification is otherwise a discrete categori-
cal one; there are several ways of measuring so-called pseudo-R-Squared. Efron’s
R-Squared is one of the most used ones, especially for Logistic Regression model
evaluation.
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R2 = 1 − ∑N
i=1(yi − π̂i)

2

∑N
i=1(yi − ȳi)2

(3.11)

where π̂ are model predicted probabilities. Efron’s R-Squared explains variability, as
the denominator can be considered as the total variability in the dependent variable,
and the numerator of the ration can be considered as the variability in the dependent
variable that is not predicted by the model. The more variability explained by the
model, the better it is[8].

AUC-ROC curve

The Receiver Operator Characteristic (ROC) curve is an evaluation matric for binary
classification models. It is a probability curve that plots recall against precision at
various threshold values. The Area Under the Curve (AUC) is a measure that shows
the ability of a classifier to identify the class of an input observation. The perfor-
mance of the model is good if the AUC is high[28].

Log-loss

Log-loss is also one of the major metrics for evaluating classification models. It is
known that the binary classification first predicts the probability of an observation
to be related to class 1. This prediction probability is a value log-loss is dependent
on. Log-loss indicates how close the prediction probability is to the actual value. The
higher the log-loss value, the more the predicted probability is different from a true
class. Log-loss value is calculated as

Loglossi = −[yiln(pi) + (1 − yi)ln(1 − pi)]

The log-loss score for a classifier is an average of all of the observations’ log-loss
values.

Logloss = − 1
N

N

∑
i=1

[yiln(pi) + (1 − yi)ln(1 − pi)]
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Chapter 4

Experimental results

4.1 Confound Regression results

While almost all of the nuisance variables were regressed from BOLD signals, as
mentioned in the data preprocessing part, the demographic features are still in-
cluded in functional connectivity. The biggest concern in working with the datasets
we have obtained is the potential influence of sites in identifying disease. Both ASD
and SCZ have an unbalanced distribution of data across sites, leading to the model’s
learning specifications about a site but not about a disease per Se. To check the
possibility of an influence of site bias, we tried to perform feature selection on FC
data using the approaches described below, selected the best one by a performance
of Logistic Regression, and used those 20 features to classify the sites, but not the
disease. Because this is a multi-class problem, we developed a CatBoost multi-class
classifier model to check the model’s ability to distinguish among given classes. We
performed classification on the ASD and SCZ datasets along with healthy controls
and disease patients separately for both sets.

CatBoost is a boosted decision tree machine learning algorithm. It is a gradient
boosting algorithm that can be used both in the form of regression and classification.
Briefly, a series of N classifiers are trained, and weights are updated in a way that
the following classifiers will pay more attention to a training set of features that were
misclassified by a previous classifier[46].

After the confound regression, we repeated the steps of control runs for site clas-
sification with the help of the CatBoost model (See table 4.1). The performance re-
sults were obtained by 5-fold cross-validation, and accuracy results were calculated
on the test set only.

The baseline accuracy was calculated using Zero Rule Algorithm. It implies that
the ML model predicts only the values of the major class so that the baseline accu-
racy would be a number of subjects of a prevalent class divided by a number of all
subjects.

TABLE 4.1: Sites classification results

Data % accuracy
before CR

% accuracy
after CR

Baseline %
accuracy

ASD 99% 88% 92%
HC from ASD set 70% 64% 68%
HC + ASD 72% 58% 49.2%
SCZ 72% 65.3% 63%
HC from SCZ set 68.3% 63.3% 67%
HC + SCZ 68.8% 62.3% 65%
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4.2 Feature selection results

To decide which features work best in explaining the difference between ASD / SCZ
and healthy controls, we applied feature selection algorithms to regressed FCs data.
All of the feature selection approaches followed the same pipeline. We set up a range
of features to try out from 10 up to 30 with a 5 features step. Except PCA had to deal
with a percentage of explained variance from 80% to 95%. At each iteration, a 5-fold
cross-validation was performed to evaluate models’ (Logistic Regression) prediction
success. The best performing feature selection algorithm turned out to be Backward
Feature Elimination with 20 features. Test accuracy, an area under the curve, and
log-loss were the main model metrics. We also considered a number of features,
especially in the case of the PCA approach. Thus, according to the metrics we ob-
tained, even though PCA performed slightly better in accuracy, it underperformed
the number of features. The least features chosen by PCA were no less than 100 in
both cases. By the overall performance comparison, the Backward Feature Elimina-
tion algorithm with 20 FCs turned out to be the most suitable one. The results are
presented in Appendix B (B.2, B.1).

4.3 Experiments’ results

We trained Machine Learning models on regressed ASD and SCZ datasets as the
features were selected. The models included were Elastic Net, Ridge, Decision Tree
Classifier, SVC, KNN, Gaussian NB, XGBoost, and ANN.

Almost all of the developed models went through a similar grid search param-
eters tuning process, where a range of values was proposed for some of the major
ones. For instance, the Elastic Net classifier was trained and cross-validated with a
0 < l1_ratio < 1 range of L1 and L2 penalty combination with a 0.1 step. The exact
process was performed for the Ridge classifier, changing the L2 penalty value. The
Decision Tree Classifier was set to work with Gini Index to measure the quality of
the split. For SVC γ value was selected as 1

n with all of the other parameters set to
default.

As for ANN, we developed a four-layer Feedforward Neural Network. The acti-
vation functions used on hidden layers were ReLU; the output layer had a sigmoid
function because of the classification problem. Grid search was performed on batch
size1, number of epochs2, optimizer type and amount of neurons.

RMSprop optimizer was selected as the best option considering the data and
other model parameters. RMSprop is a gradient-based optimizer developed for
mini-batch learning. It works by using a moving average of squared gradients to
normalize the gradient. It simply means that RMSprop is an adaptive learning ap-
proach, and the learning rate changes over time[49].

Models were cross-validated with a 5-fold Stratified Cross-Validation technique.
Stratified cross-validation makes sure that training and test sets have the same pro-
portion of the feature of interest as in the original dataset. 80/20 rule was applied
to split the data into subsets. In this way, we ensure the generalization of metrics
calculated. As soon as we split the dataset into train and test, we start the confound
regression algorithm on the train set, obtaining β coefficients from OLS regression.
Those coefficients are saved for future application to test data to ensure that test
observations are as unknown to the model as possible.

1Number of samples processed before the model is updated.
2The number of complete passes through the training dataset.
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We applied several metrics to evaluate models’ performance, including accuracy,
recall and precision scores, F-1 score, pseudo R-squared and log-loss. Based on the
metrics’ results, we concluded the best performing model, Gaussian Naive Bayes for
ASD data and NuSVC for SCZ data. The best test accuracy for the ASD dataset is
92.4% with a ROC-AUC score equal to 0.95. For the SCZ dataset, accuracy results
were up to 93.8% and a ROC-AUC score of 0.98. The results obtained from all of the
models are presented below.

TABLE 4.2: Classification results on ASD dataset.

Model Acc. % Efron’s R2 F-1 Recall Precision AUC Log-loss

Log. Reg. 90.8 0.63 0.90 0.90 0.91 0.95 0.26
Elastic Net 91.2 0.65 0.91 0.90 0.92 0.95 0.24
Ridge 91.2 0.65 0.91 0.91 0.91 0.94 0.2
DT 73.2 -0.07 0.73 0.71 0.76 0.73 0.71
SVC 90.8 0.63 0.92 0.94 0.89 0.93 0.23
NuSVC 88.4 0.54 0.89 0.90 0.88 0.93 0.20
KNN 87.6 0.50 0.88 0.90 0.87 0.93 0.27
Gauss. NB 92.4 0.70 0.92 0.92 0.92 0.95 0.16
XGB 84.8 0.39 0.85 0.86 0.84 0.91 0.24
ANN 91.2 0.65 0.91 0.90 0.91 0.92 0.23

TABLE 4.3: Classification results on SCZ dataset.

Model Acc. % Efron’s R2 F-1 Recall Precision AUC Log-loss

Log. Reg. 93.5 0.74 0.94 0.95 0.93 0.98 0.24
Elastic Net 92.1 0.69 0.92 0.92 0.92 0.98 0.24
Ridge 92.5 0.70 0.93 0.92 0.94 0.98 0.12
DT 69.9 -0.2 0.68 0.65 0.72 0.70 0.18
SVC 92.8 0.71 0.93 0.91 0.95 0.98 0.14
NuSVC 93.8 0.75 0.94 0.92 0.95 0.99 0.20
KNN 88.7 0.55 0.88 0.86 0.92 0.95 0.31
Gauss. NB 92.8 0.71 0.93 0.93 0.93 0.98 0.24
XGB 83.2 0.33 0.82 0.81 0.85 0.94 0.25
ANN 92.8 0.73 0.93 0.95 0.93 0.99 0.21

As we can observe in Table 4.3, the best performing model based on almost all
of the metrics is NuSVC. NuSVC is the same model as SVC mathematically, but the
only difference is that NuSVC uses parameter ν to control the number of support
vectors. Its value represents an upper bound on the fraction of margin errors and
a lower bound on the support vector fraction. As training is done on roughly the
same dataset (features were selected using the same algorithm), we can compare the
NuSVC model and Gaussian Naive Bayes model on SCZ data. We can see that the
difference in metrics variates by ±0.05, which is not a huge gap. So, even though a
NuSVC classifier performs slightly better than Gaussian NB, Gaussian NB can still
be a reliable model for implementation. It means the pipeline of building a classifier
can be generalized without considering a disease.
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4.3.1 Models generalization

One of the goals we set in this work is to develop a generalized classifier, which will
look for differences between healthy and mentally ill patients without considering
any other influences of demographic data. Key points were not to base the model
on only one site but try to cover as many as possible; regress out the influence of
demographic data; check whether classifiers can be generalized to other diseases,
and find the similarities between them on a brain level, if present.

Our datasets contain data from around seven different sites; the influence of
fMRI scanners and sites per Se, along with age and sex, were omitted from the FC.
After developing the classifiers, we examined the ability to predict patients with
other psychiatric diseases. We used accuracy results and ROC-AUC scores as signif-
icant generalizability identifiers.

We attempted to use a set of diseases for testing a hypothesis, including ASD,
SCZ, bipolar disorder, and Major Depressive Disorder (MDD). Our prior assumption
is that if accuracy and ROC-AUC scores are around 0.5, the model cannot distinguish
between patients with the disorder and healthy controls. On the other hand, if the
values are closer to 1, the classifier can differentiate one having mental problems
from the others. Below are the results we obtained from the generalizability tests.

TABLE 4.4: Generalizability measures of ASD and SCZ classifiers on
other psychiatric disorders.

Data ASD Data SCZ
Acc. (%) ROC-AUC Acc. (%) ROC-AUC

SCZ 51.2% 0.51 ASD 60% 0.65
BD 83.6% 0.87 BD 72.8% 0.81

MDD 48.8% 0.52 MDD 46.3% 0.44

As we can see, both of the classifiers did well in generalizing to bipolar disorder,
having a 0.8+ AUC score. That tells us that there is some relationship between ASD,
SCZ, and BD, which helps differentiate them from healthy controls. ASD classifier
did not show any correspondence to SCZ patients, even though one of the recent
works on ASD classifier generalization[62] shows that SCZ has a 0.65 ROC-AUC
score and is the most relatable disease to ASD among SCZ, ADHD, and MDD. Even
though the ASD classifier did not manage to generalize to SCZ, it happened vice
versa. SCZ classifier performs slightly better on ASD data. The reason could be
either feature selected for an ASD classifier that does not suit SCZ data or because
the SCZ dataset had more observations and hence, a bigger train set compared to the
ASD dataset. From the above results (4.4 we can conclude that there exists a possible
relationship between ASD, SCZ, and BD on the brain functional level, which can be
explained by functional connectivity.

The relationship between ASD, schizophrenia, and bipolar disorder was inves-
tigated. It included both symptomatic and external similarities, as well as physio-
logical ones. Autistic-like traits were present in people with bipolar disorder and
schizophrenia. According to the investigation[38], there is shared pathophysiology
among ASD, SCZ, and BD. It is also proven that there exists an overlap between
ASD and psychotic illnesses, meaning patients with ASD can potentially experience
schizophrenia and bipolar disorder at the same time[33]. The studies on physiolog-
ical similarities among those disorders also show a potential overlap. One of the
studies provides evidence of diseases’ genetic factors representing common biolog-
ical overlap[11]. At the molecular level, gene expressions in the brain share some
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physical characteristics, implying a direct relationship between ASD, SCZ, and BD.
It depicts a potential causal genetic component responsible for risk factors, forma-
tion, and development of those illnesses[21].

4.3.2 Selected features from biological standpoint

As we performed feature selection for each model, it is important to look at the func-
tional connectivity features selected and the same brain regions responsible for it.
We would also like to check the FC patterns’ hyper- or under- connectivity presence.

On figures 4.1 and 4.2 we depicted the FCs of selected features to visually com-
pare intensiveness of the connectivity among subjects. The FCs plotted are the aver-
age among all of the HCs, ASD, and SCZ patients used in the research so that it is
possible to cover not only a single case but also see the whole picture.

(A) ASD (B) HC

FIGURE 4.1: ASD vs HC Functional Connectivity.

(A) SCZ (B) HC

FIGURE 4.2: SCZ vs HC Functional Connectivity.

From the above figures, we clearly can see that ASD connectivity seems to be
much higher than the one for a control group (4.1). The opposite, however, corre-
sponds to SCZ and controls, where the intensity of FCs is higher for HC in compar-
ison to SCZ subjects (4.2). It can was mentioned in Mental Health and FCs chapter
(2.0.2), that Schizophrenia tends to possess less strongly integrated functional con-
nectivity when comparing to HCs[36, 34]. Moreover, ASD patients tend to have
hyper-connectivity patterns[61].

Figures 4.3 and 4.4 show a closer look on a relationship among the brain re-
gions, the connection values, and a type of connection. By the type of connection,
we mean whether the connection is more intense (black line) or less intense (dotted
line) than healthy controls. We depicted the connectivity pattern between brain re-
gions selected as the distinguishing ones in the form of a graph, where nodes are
brain regions, edges are connections, and the FC value is captured between the two.
Nodes naming is present in Appendix C (C.1, C.2).

According to the studies on hyper- and hypo-connectivity of ASD and SCZ, ASD
is believed to be prone to hyper-connectivity between primary sensory and par-
alimbic, primary sensory and association, and paralimbic and association sybsys-
tems[53]. The paralimbic subsystem consists of the insula, anterior cingulate cortex,
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FIGURE 4.3: Graph representation of selected ASD FCs and it’s val-
ues as edges. Dotted line means fcASD ≤ fcHC, thick black line corre-

sponds to fcASD > fcHC.

FIGURE 4.4: Graph representation of selected SCZ FCs and it’s val-
ues as edges. Dotted line means fcSCZ ≤ fcHC, thick black line corre-

sponds to fcSCZ > fcHC.

posterior cingulate cortex, and the orbitofrontal cortex, while association areas in-
clude the lateral frontal and parietal cortices. Other works state that there is an
obvious hyper-connectivity between the thalamus and cortical regions like the tem-
poroparietal junction and posterior cingulate cortices, or amygdala and some other
cortical regions[27]. On Figure 4.3 we observe many functional connections values
higher in ASD than in HC. Comparing the regions involved in those intense con-
nections, we can conclude that the results somewhat relate to the Supekar et al. [53]
investigation. We have noticed that some of the sub-regions of the primary cortices
correspond to the ones mentioned in the research([53], [27]). For instance, there is
a strong connection between the occipitotemporal lateral sulcus and amygdala (ref.
C.2), where the sulcus relates to the os-called Lingual Gyrus (marked yellow on Fig-
ure 4.5). According to Iidaka et al. [27], the hyper-connectivity is present within the
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lingual gyrus and amygdala.

FIGURE 4.5: Areas of localization on medial surface of hemisphere.
Motor area in red. Area of general sensations in blue. Visual area in
yellow. Olfactory area in purple. The psychic portions are in lighter

tints[22].

As for schizophrenia, it was characterized by hyper-connectivity in motor cor-
tices to the thalamus, motor cortices to the cerebellum, and prefrontal cortex to sub-
thalamic nucleus[59]. We have a strong relationship between the central sylvian
sulcus and a ventricle among the selected functional connections. The central syl-
vian sulcus is related to the motor cortex, and a ventricle is one of four ventricles in
the cerebellum. That again proves a correspondence between the reliability of our
research and other available works.
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Chapter 5

Applications

5.1 Market overview

Artificial Intelligence plays a priceless role in every human’s life. It surrounds us
everywhere; it can entertain us, help us do our work, and save our lives.

Since the pandemic started, the demand for psychological therapy has increased,
leading to higher workloads among professionals.

FIGURE 5.1: Changes in demand by treatment area since the coron-
avirus pandemic started[60].

Such an increase in demand results from various factors that are now present
in almost every human-caused by a rapid change in the style of living, habits, and
relationships with other people.

According to a recent interview with Dr. Ellen Lee, assistant professor of psychi-
atry, University of California San Diego, it is quite an issue in the psychiatry field not
to have specific biomarkers of diseases to conclude a diagnosis based on biological
pathologies[35]. Because of an absence of medical tests that could clearly state the
patient’s problems, doctors rely only on the symptoms provided by a patient. Usu-
ally, it does not cover that different people can have different symptoms but still be
diagnosed with the same disorder.

As an observed tendency in demand for mental care increases, many improve-
ments in patients processing speed, the accuracy of diagnosis, and preventive treat-
ment, could be applied. There are many different ML solutions for mental care sup-
port that cover various issues, from short-term support or symptoms treatment to
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proper therapy type selection. One of those tools is Ieso Digital Health. They pro-
vided an AI solution to their platform to help therapists and patients be on the same
page with tracking the insights from sessions and predictions of patients’ current
state. It integrates cognitive behavioral therapy online to support mental health care
provision clinicians.

There are some other startups on the market directed to patients as users. They
assist patients through their mental illness process (Wysa), provide access to real-
world interactions with AI coaches/therapists (Happify), or provide therapy chat-
bots to track one’s mood (Woebot).

5.2 Use cases

The use cases of the developed classifiers can vary a lot depending on a primary
goal. If appropriately modeled, they can play a significant role not only in a diag-
nosis of disease but bio-markers identification, personalized treatment, supporting
mechanism to track the process of a disease, and hence a possibility to change treat-
ment depending on the current state.

The most direct option is to integrate a model into a more complex system, fol-
lowing the concept of Ieso Digital Health. The diagnostic tool, available to psy-
chotherapists, with an ability to obtain a hint on potential diagnosis and develop
therapy sessions based on the results from medical data. The diagnosis results can
not only be used for figuring out whether there is any mental illness but can help in
choosing the best therapist match. As soon as the therapist’s choice and treatment
are personalized, it is time to track the progress, where the classifiers could also be
helpful. With the additional support of other personalized tools, it also can provide
information on the direction in treatment, explanation of symptoms, and its relation
to the diagnosis given by a model. Thus, the whole mental illness journey has the
potential to be much more successful from the starting point, covering the duration
up till the patient is no longer having issues because of the disease’s influence.
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Chapter 6

Conclusion and future work

As the result of this thesis, we developed generalized, applicable, and reliable classi-
fication models for Autism Spectrum Disorder and Schizophrenia based on resting-
state fMRI functional connectivity data. To develop a pipeline for model training,
we tested several feature selection algorithms validated on each of the used datasets.
We also applied the confound regression approach to limit the effect of bias coming
from variations of fMRI scanners and sites.

Consequently, we trained and validated different classical Machine Learning al-
gorithms for classification. The selected models were properly evaluated and man-
aged to gain 92.4% and 93.8% of accuracy, respectively. Other metrics to evaluate
performance were applied and considered in a final decision.

The classifiers were able to generalize to bipolar disorder, well-meaning an ex-
istence of a relationship between ASD, SCZ, and bipolar disorder. The hypothesis
was supported by some of the works related to investigating this interrelationship.
We also managed to overview the functional connectivity and brain regions playing
a significant role in driving our models.

One of the limitations of this research is data. It would be great to work with
the data collected from all over the world, not only from one country (in our case -
Japan). It may be possible that styles of living, the influence of society, and genetics
are also important factors to consider in future work. By broadening the data range,
we will cover more cases with more variability in demographics; thus, the amount
of observation will also expand.

The whole work was a journey into new topics, both from data science and med-
ical points of view. Much new information and interesting results were gained from
other scientists’ work and a possibility to combine various approaches to similar
problems.

The future steps for the work include extending the subjects’ amount, data from
other countries’ institutions, and revisiting the developed models with new data.
It would also be an excellent point to dive deeper into a psychiatric and medical
spectrum of the problem to understand better the processes behind brain functions
and their dependencies on mental illness specifications.
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Appendix A

TABLE A.1: Consortium Sites Data.

Site Scanner Participants Number of data

ATR Siemens Obsessive compulsive
disorder (OCD)
Healthy controls (HC)

OCD 4
HC 108

University of Tokyo GE, Philips Autism spectrum dis-
order (ASD)
Major depressive disor-
der (MDD)
Schizophrenia (SCZ)
Bipolar disorder (BPD)
Dysthymia
Other psychiatric disor-
ders (Other)
Healthy controls (HC)

ASD 10
MDD 62
SCZ 35
BPD 41
Dysthymia 4
Other 28
HC 170

Osaka University Siemens Intractable neuropathic
pain (INP)
Post-stroke without
pain (PSP)
Healthy controls (HC)

INP 43
PSP 10
HC 29

Showa University Siemens Autism spectrum dis-
order (ASD)
Schizophrenia (SCZ)
Healthy controls (HC)

ASD 115
SCZ 19
HC 101

Kyoto University Siemens Schizophrenia (SCZ)
Depression (DEP)
Healthy controls (HC)

OSCZ 92
DEP 16
HC 234

Hiroshima University GE,
Siemens

Depression (DEP)
Healthy controls (HC)

DEP 173
HC 261
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Appendix B

TABLE B.1: Feature selection results on SCZ dataset.

FS alg. No. of features Var. expl. Acc. % AUC Log-loss

PCA features 147 0.8 0.77 0.87 0.43
PCA features 172 0.85 0.79 0.88 0.55
PCA features 200 0.9 0.78 0.87 0.55
PCA features 235 0.95 0.81 0.88 0.52
ICA 10 - 0.79 0.89 0.55
ICA 15 - 0.81 0.88 0.55
ICA 20 - 0.81 0.87 0.41
ICA 25 - 0.79 0.88 0.51
ICA 30 - 0.79 0.89 0.51
Random Forest 10 - 0.83 0.92 0.30
Random Forest 15 - 0.85 0.93 0.31
Random Forest 20 - 0.86 0.95 0.32
Forward FS 10 - 0.72 0.80 0.26
Forward FS 15 - 0.72 0.79 0.26
Forward FS 20 - 0.73 0.79 0.26
Backward FE 10 - 0.90 0.97 0.33
Backward FE 15 - 0.93 0.99 0.31
Backward FE 20 - 0.96 0.99 0.27
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TABLE B.2: Feature Selection results on ASD dataset.

FS alg. No. of features Var. expl. Acc. % AUC Log-loss

PCA features 128 0.8 0.92 0.97 0.39
PCA features 149 0.85 0.93 0.98 0.41
PCA features 174 0.9 0.95 0.98 0.41
PCA features 203 0.95 0.96 0.99 0.28
ICA 10 - 0.97 0.99 0.28
ICA 15 - 0.99 0.99 0.24
ICA 20 - 0.99 0.99 0.23
ICA 25 - 0.99 0.99 0.22
ICA 30 - 0.99 0.99 0.22
Random Forest 10 - 0.90 0.97 0.26
Random Forest 15 - 0.93 0.98 0.28
Random Forest 20 - 0.94 0.99 0.28
Backward FE 10 - 0.97 0.99 0.22
Backward FE 15 - 0.98 0.99 0.21
Backward FE 20 - 0.99 0.98 0.17
Forward FS 10 - 0.90 0.98 0.31
Forward FS 15 - 0.92 0.98 0.30
Forward FS 20 - 0.94 0.99 0.30
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TABLE C.1: BrainVisa parcellation regions for SCZ dataset.

Index BrainVisa acronym Label

1 F.C.L.a._right Right anterior lateral fissure
2 F.C.L.p._left Left posterior lateral fissure
3 F.C.L.p._right Right posterior lateral fissure
4 F.C.L.r.ant._left Left anterior ramus of the lateral fissure
6 F.C.L.r.asc._left Left ascending ramus of the lateral fissure

12 F.C.L.r.sc.ant._left Left anterior sub-central ramus of the lateral ...
25 F.I.P.Po.C.inf._right Right superior postcentral intraparietal superi...
29 F.I.P.r.int.1_right Right primary intermediate ramus of the intrapa...
37 OCCIPITAL_right Right lobe occipital
38 S.C.LPC._left Left paracentral lobule central sulcus
39 S.C.LPC._right Right paracentral lobule central sulcus
40 S.C._left Left central sulcus
42 S.C.sylvian._left Left central sylvian sulcus
46 S.Cu._left Left cuneal sulcus
53 S.F.int._right Right internal frontal sulcus
62 S.F.polaire.tr._left Left polar frontal sulcus
63 S.F.polaire.tr._right Right polar frontal sulcus
76 S.O.T.lat.med._right Right median occipito-temporal lateral sulcus
81 S.Olf._left Left olfactory sulcus
83 S.Or._left Left orbital sulcus
95 S.Pe.C.marginal._left Left marginal precentral sulcus

102 S.Po.C.sup._right Right superior postcentral sulcus
106 S.Rh._right Right rhinal sulcus
113 S.T.s._left Left superior temporal sulcus
114 S.T.s._right Right superior temporal sulcus
118 S.T.s.ter.asc.post._right Right posterior terminal ascending branch of th...
124 caudate._left Left Caudate
125 putamen._left Left Putamen
132 putamen._right Right Putamen
137 ventricle._left Left ventricle
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TABLE C.2: BrainVisa parcellation regions for ASD dataset.

Index BrainVisa acronym Label

4 F.C.L.r.ant._left Left anterior ramus of the lateral fissure
7 F.C.L.r.asc._right Right ascending ramus of the lateral fissure

13 F.C.L.r.sc.ant._right Right anterior sub-central ramus of the lateral...
23 F.Coll._right Right collateral fissure
25 F.I.P.Po.C.inf._right Right superior postcentral intraparietal superi...
27 F.I.P._right Right intraparietal sulcus
32 F.P.O._left Left parieto-occipital fissure
33 F.P.O._right Right parieto-occipital fissure
34 INSULA_left Left insula
39 S.C.LPC._right Right paracentral lobule central sulcus
41 S.C._right Right central sulcus
42 S.C.sylvian._left Left central sylvian sulcus
44 S.Call._left Left subcallosal sulcus
51 S.F.inf.ant._right Right anterior inferior frontal sulcus
52 S.F.int._left Left internal frontal sulcus
53 S.F.int._right Right internal frontal sulcus
56 S.F.marginal._left Left marginal frontal sulcus
61 S.F.orbitaire._right Right orbital frontal sulcus
62 S.F.polaire.tr._left Left polar frontal sulcus
75 S.O.T.lat.med._left Left median occipito-temporal lateral sulcus
79 S.O.p._left Left occipito-polar sulcus
80 S.O.p._right Right occipito-polar sulcus
81 S.Olf._left Left olfactory sulcus
86 S.Pa.int._right Right internal parietal sulcus
87 S.Pa.sup._left Left superior parietal sulcus
90 S.Pa.t._right Right transverse parietal sulcus
95 S.Pe.C.marginal._left Left marginal precentral sulcus

106 S.Rh._right Right rhinal sulcus
113 S.T.s._left Left superior temporal sulcus
115 S.T.s.ter.asc.ant._left Left anterior terminal ascending branch of the ...
117 S.T.s.ter.asc.post._left Left posterior terminal ascending branch of the...
121 S.s.P._left Left sub-parietal sulcus
128 amygdala._left Left Amygdala
130 thalamus._right Right Thalamus
139 cerebral_white Matter._left Left Cerebral White Matter
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