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Abstract

Epilepsy affects 1% of the world’s population yearly and is one of the
most widespread diseases. Although some forms of epilepsy are effectively
treated using a medication, nearly every third patient needs surgical inter-
vention to remove the epileptogenic area.

This study examined an epileptic brain’s activity during the hallmarks
of epileptic activity - interictal epileptiform discharges (IEDs) - using Causal
Bayesian Networks. Results showed that trends of causal activity increase
before an IED and decrease afterwards, differentiating across awareness states.
Another benefit of the study is the recommendation system for a clinician
while evaluating the epileptogenic region. The channels that have most fre-
quently been a cause of an IED are reported as a potential resection area.

The code is freely available on the Github repository with the correspond-
ing documentation for a clinician.

HTTP://WWW.UCU.EDU.UA
http://department.university.com
https://github.com/sofiagarkot/causal-activity-modelling/


iv

Acknowledgements
First and foremost, I would like to thank my thesis advisor, Moritz Grosse-

Wentrup, who suggested the topic, provided clear explanations, ensured un-
derstanding, and cared about me during the most challenging times.

I also want to deeply thank the clinician Johannes Lang, who was avail-
able anytime to provide a medical perspective to the study.

A particular place in my heart is dedicated to the Machine Learning Lab
at Ukrainian Catholic University, enhancing science at our university and
preparing leading ML researchers.

Without the Applied Science Faculty, I would literally never started the
journey as a programmer, and I would not finish this four-year-journey with-
out my friends and family. Thank you for support!

Last but not least, I would like to express my gratitude to the Armed
Forces of Ukraine - thus, I can defend my thesis in Ukraine.



v

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

1 Introduction 1
Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Literature review 4
IEDs and epilepsy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Causal activity modeling of a brain . . . . . . . . . . . . . . . . . . . 5

3 Dataset description 6

4 Methodology 7
Independent Component Analysis . . . . . . . . . . . . . . . . . . . 8
Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . 10
Causal Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . 10
Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Stimulus-based causal inference . . . . . . . . . . . . . . . . . . . . . 12
Inverse decomposition: component to channel mapping . . . . . . . 13

5 Results 15
Hypothesis testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Epileptogenic region localization . . . . . . . . . . . . . . . . . . . . 17

6 Conclusion 18
Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Further steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Appendix 19

A 19

B 20

C 24

D 25

Bibliography 26



vi

List of Figures

1.1 MRI-based 3D scheme of SEEG implantation: patient №8. . . . 3
1.2 Cortical reconstruction from MRI of the patient №8. . . . . . . 3

3.1 Sketch of a sample electrode. . . . . . . . . . . . . . . . . . . . 6

4.1 The pipeline of analysis. . . . . . . . . . . . . . . . . . . . . . . 7
4.2 The original recording of patient №8 (left) and the decomposed

independent components (right). . . . . . . . . . . . . . . . . . 8
4.3 Comparative distribution of Non-Gaussian sources to the dis-

tribution of linear combination of those. . . . . . . . . . . . . . 9
4.4 Undefined graph. . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.5 Chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.6 Fork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.7 Collider. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.1 Number of causal interactions relative to the start of IED vs.
averaged component state during the IEDs, patient №10. . . . 15

5.2 Proposed resection area in case of patient №8. . . . . . . . . . . 17

B.1 MRI based 3D scheme of SEEG implantation: patient № 10. . . 20
B.2 Cortical reconstruction from MRI of the patient №10. . . . . . 20
B.3 Proposed resection area in case of patient №10. . . . . . . . . . 21
B.4 MRI-based 3D scheme of SEEG implantation: patient № 1. . . 21
B.5 Cortical reconstruction from MRI of the patient №1. . . . . . . 21
B.6 The area of most frequent IEDs marked by a clinician, patient

№1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
B.7 The area of most frequent IEDs proposed by an algorithm, pa-

tient №1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

C.1 Averaged state of all the components during all the IEDs along
with the averaged state of channel POL RTD2 during all the
IEDs. Patient №8. . . . . . . . . . . . . . . . . . . . . . . . . . . 24

C.2 Averaged state of chosen significant components during all the
IEDs along with the averaged state of channel POL RTD2 dur-
ing all the IEDs. Patient №8. . . . . . . . . . . . . . . . . . . . . 24

D.1 Averaged and normalized distribution of causal interactions
relative to the beginning of a chain: 100 ms. . . . . . . . . . . . 25

D.2 Averaged and normalized distribution of causal interactions
relative to the beginning of a chain: 500 ms. . . . . . . . . . . . 25



vii

List of Tables

5.1 Hypothesis testing results: pval100 corresponds to the tests on
the distributions with a window of length 100 ms and pval500
- to those of length 500 ms. . . . . . . . . . . . . . . . . . . . . . 16

A.1 Dataset description. . . . . . . . . . . . . . . . . . . . . . . . . . 19



viii

List of Abbreviations

IED Interictal Epileptiform Discharges
ECoG ElectroCorticoGraphy
iEEG intracranial ElectroEncephaloGraphy
SEEG Stereotactic ElectroEncephaloGraphy
ASM Anti SeizureMedication



ix

To the bravest of the Earth - to Ukrainians



1

Chapter 1

Introduction

According to the World Health Organization (WHO, 2022), epilepsy af-
fects 50 million people worldwide. The main symptom of epilepsy is seizures.
Seizures involve sudden, temporary bursts of electrical activity in the brain
that change or disrupt the way messages are sent between brain cells. These
electrical bursts cause involuntary changes in body movement, function, sen-
sation, behavior, or awareness (Kiriakopoulos, 2019). Seizures can also be
accompanied by the loss of consciousness and control of bowel or bladder
function. Epilepsy is defined as having two or more unprovoked seizures
occurring more than 24 hours apart.

Epilepsy treatment varies depending on the form and a patient’s state.
The most wide-spread way of epilepsy treatment is anti-seizure medications
(ASM). However, studies (Picot et al., 2008) show that nearly a quarter of
patients with seizures have a drug-resistant form of epilepsy. Thus, the rec-
ommended therapy is epilepsy surgery. An evaluation for epilepsy surgery
is appropriate for patients with seizures that may be focal in origin and con-
tinue to occur despite treatment with ASM. Although usually seen as the
last option, the invasive treatment shows significant improvement in the
patient’s quality of life and seizure frequency when performed in the early
stages after diagnosing drug-resistance (Engel et al., 2012). Thus, quick pre-
surgical analysis is of great importance.

The effectiveness of epilepsy surgery is more significant than that of the
ASM: around 70% of people who have temporal lobe surgery find that the
surgery stops their seizures, and they become seizure-free. For a further 20%
of patients the seizures are reduced (Epilepsy, 2021).

Before the surgical therapy, a doctor carefully evaluates the patient’s clin-
ical history. The reasoning for surgical intervention is based on the presump-
tion that seizures can be abated if the critical mass of the epileptogenic net-
work is safely removed or disconnected. For the evaluation of the epilepto-
genic zone (EZ), a subject undergoes previous monitoring using video-EEG,
a variety of tests, and intracranial EEG observation. It may take up to a
month of invasive recording before a doctor will come up with conclusions
about the exact location of the EZ.

There are two distinct phases in epilepsy: ictal corresponding to the pe-
riod of seizures and interictal corresponding to the period between them.
During the interictal period a brain generates abnormal activity, namely in-
terictal epileptiform discharges (IEDs).
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In order to evaluate the epileptogenic region, the smaller units of epileptic
activity - the IEDs - are later tracked on the recorded iEEG by a clinician.
Based on the evidence, the region of surgical intervention is determined, and
the operation is performed.

Generally, there are two types of invasive brain monitoring: Electrocor-
ticography (EcOG) and Stereotactic-electroencephalography (SEEG). While
EcOG can cover a selected brain area more densely, SEEG electrodes are
deeper than EcOG, enabling the monitoring closer to the source of epilep-
tic activity.

The sample SEEG setup in the case of patient №8 is visible in Figure 1.1,
and cortical reconstruction from MRI is in Figure 1.2.

Problem statement

Since epilepsy is a dynamic disorder of the brain, it is particularly inter-
esting to study it from a computer modeling perspective.

The first problem is the question of an IED formation: does the epileptic
activity differ before and after a discharge and across the different aware-
ness states. The developed computer model will provide more evidence for
epilepsy pathogenesis, answering the question of how IEDs form.

As a result of the cause-effect modeling, the source region of discharges
can be estimated. Thus, another challenge is an assistant model for a clinician
that will point to the source of discharges.



Problem statement 3

FIGURE 1.1: MRI-based 3D scheme of SEEG implantation: pa-
tient №8.

FIGURE 1.2: Cortical reconstruction from MRI of the patient
№8.
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Chapter 2

Literature review

IEDs and epilepsy

The electrical brain activity, recorded by iEEG, consists of rhythmic com-
ponents. These components reflects neural oscillations, which are fluctua-
tions in the populations of neurons (Cohen, 2014). Brain rhythms can be
distinguished into five bands based on the frequency of oscillations.

1. Delta band (2 to 4 Hz) are registered during deep sleep, trance or coma.

2. Theta band (4 to 8 Hz) are present during deep relaxation, sleep, or
meditation.

3. Alpha band (8 to 12 Hz) is registered in a person awake with eyes
closed.

4. Beta band (15 to 30 Hz) are detectable in the awake state of a person.

5. Gamma band (>80 Hz) are registered during high cognitive processes.

Interictal epileptiform discharges are high-frequency oscillations lasting
less than 80 milliseconds during the period between two consecutive ictal
onsets. The studies of seizure origins showed their relation to IEDs: they may
originate from a complex interaction between separate brain regions, and the
correct detection and resection of IED-leading areas improves seizure control
and reduce neurological, neuropsychological, and psychiatric post-surgical
morbidity (Alarcon et al., 1997, Qi et al., 2020) .

There are several dysfunctional regions in epileptic patients: the irritative
zone (IZ) - responsible for IEDs generation and the seizure onset zone (SOZ) -
region, where the first electrophysiological changes are detected at ictal onset
(Amini et al., 2011). The relationship between these regions (IZ and SOZ) has
been a subject of debate. The very early study in this domain (Gotman, 1991)
shows the dissociation between spikes and seizures and doubts medication’s
direct influence on spiking. In contrast, a more recent study by Azeem et al.,
2021 shows the opposite. The authors modeled an epileptic network based
on interictal spike propagation in the form of a graph. A brain state at a
particular electrode represented a node in a graph and was correspondingly
classified into a source, intermediate and terminal. The class was prescribed
depending on whether spikes were starting, ending, or both coming and out-
going from a particular channel. The results showed that the resection of an
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area including at least two such source nodes would result in a 70% reduc-
tion of spike propagation, supporting the connection between the IEDs and
the onsets decrease. Similar were the results of Bartolomei et al., 2016: in-
cluding the regions with high spike rate is associated with good post-surgical
outcome.

Causal activity modeling of a brain

One of the central tasks in neuroimaging is modeling the brain’s connec-
tivity (Health NIH, 2009). Connectivity is defined as the estimation of in-
teractions and communication between distinct units of the central nervous
system and is subject to inputs producing outputs (Friston, 2003). The causal
relationships of different brain regions are one of the key problems in the
domain. That is why most of the discussed methods of estimating causal
relationships arose from studies on connectivity.

There are several ways of modeling causal brain activity: Causal Bayesian
Networks (CBN) (Grosse-Wentrup et al., 2015), Dynamic Causal Models (DCM)
(Friston, 2003), Hierarchical Dynamic Models (Friston, 2008), Directed Markov
Graphical Models (Biswas and Shlizerman, 2022), Structural Equation Mod-
eling (SEM) (McIntosh and Gonzalez-Lima, 1994), Granger causality (Kamiński
et al., 2001) and even Graph Neural Networks were recently used for causal
modeling (Wein et al., 2021). The above differ based on the assumptions
made about the system (Friston, 2003, Lytton, 2008). The SEMs assume that
the interactions are linear and the inputs are treated as unknown and stochas-
tic, while DCMs assume that a brain is a deterministic nonlinear dynamic
system.

The modeling framework of choice is Causal Bayesian Networks (CBN).
It has been widely used in neuroscience for studying multisensory percep-
tion (Kording et al., 2007) and functional brain connectivity (Rajapakse and
Zhou, 2007).

The application to the iEEG data is motivated by the presence of latent
confounders. A confounder is a variable that effects both an assumed cause
and an effect, resulting in a spurious association between them. The problem
arises from the limited positioning of electrodes, such that it is impossible
to observe all the spike sources. The utilized CBN framework can detect
the cause-effect relationship in a system with latent confounders (Grosse-
Wentrup et al., 2015).
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Chapter 3

Dataset description

Intracranial EEG (iEEG) is a method used for the investigation and treat-
ment of various pathological conditions, including drug-resistant epilepsy.

As well as EEG, the iEEG measures voltage fluctuations resulting from
ionic current within the neurons of the brain. The intracranial recordings
are more valuable in identifying the source of epileptogenic activity since
electrodes are located closer to the physiological onset-generating region.

The SEEG recordings were analyzed in this study. The depth electrodes of
SEEG measure the local field potential of a neural population in a sphere with
a radius of 0.5–3 mm around the tip of a macro-contact (Logothetis, 2003).
Every electrode consisted of up to 15 macro-contacts and is schematically
visualized in Figure 3.1.

The dataset was collected at the University Clinic Erlangen. It consists
of ten patients. The patients were undergoing pre-surgical SEEG monitoring
for localization of the epileptogenic region. Nine out of ten patients were put
on medication. One patient was put off medication treatment. The average
duration of the recordings is 2 hours 9 minutes, with the corresponding av-
erage number of marked IEDs being 3050. The number of channels, as well
as their location, differ from patient to patient. Every patient was recorded
in both sleep and wake states. The detailed dataset description can be seen
in Appendix A.1.

The markings are defined as the timestamps of the IEDs detected by an
experienced clinician. The format of marking is evt. The model is channel-
indifferent, so the markings does not have to provide the information on the
channel they have been spotted on. Each timestamp is marked in Time mea-
surement units (Tmu). The signal is recorded in the European Data Format
(EDF) format. The electrodes were positioned based on a clinician’s assump-
tions of a potential source location.

FIGURE 3.1: Sketch of a sample electrode.
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Chapter 4

Methodology

The original signal was decomposed into a patient-specific number of
components representing different brain activities, including artifacts. A sub-
set of components was chosen based on their average activity during marked
IEDs. The resulting components were analyzed for the presence of a causal
link between them in form of a chain using the Causal Bayesian Network
framework. The resulting causal interactions were recorded, and the distri-
bution of these events corresponding to the time of an IED start was ana-
lyzed. Based on the observations, five following hypotheses were stated and
tested.

1. H0: number of causal interactions pre-IED = number of causal interac-
tions post-IED

2. H0: number of causal interactions pre-IED = number of causal interac-
tions post-IED in the wake state

3. H0: number of causal interactions pre-IED = number of causal interac-
tions post-IED in the sleep state

4. H0: number of causal interactions post-IED in the sleep state = number
of causal interactions post-IED in the wake state

5. H0: number of causal interactions pre-IED in the sleep state = number
of causal interactions pre-IED in the wake state

The components that are most frequently a source of causal interactions
are assumed to cover the source of epileptogenic activity. The names of chan-
nels obtained from the components by inverse decomposition are reported to
a clinician. The pipeline of data processing is visible in Figure 4.1.

FIGURE 4.1: The pipeline of analysis.
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FIGURE 4.2: The original recording of patient №8 (left) and the
decomposed independent components (right).

Independent Component Analysis

Independent Component Analysis (ICA), firstly discussed by Herault and
Jutten, 1986, is a widely used technique in the signal processing domain. ICA
aims to estimate the source signals from a set of recordings where the sources
were mixed in unknown ratios.

The easiest way to explain ICA is by bringing up the problem of blind
source separation. The three instruments playing in a room are recorded
using three microphones. Is it possible to unmix the recordings from three
microphones into isolated sounds of every instrument?

The application to SEEG data is similar - a signal consists of k electrodes
that are simultaneously recording the electrical activity of a brain. Besides
base activity, a signal includes blinks, heartbeats, and muscular activity from
swallowing - all recorded simultaneously. The goal is to separate the ob-
tained signal into n independent components that will account for the sources
generating these activities. In Figure 4.2, a subset of recorded channels is
displayed in the case of patient №8 on the left, and on the right, the corre-
sponding decomposed components are shown. As an example of an artifact,
that will be ignored in the further analysis, one can see the heart muscular
activity on the component ICA008.

Mathematically, the problem can be formulated as following. Let x rep-
resent the recorded signal. The assumption is that x results from mixing the
independent sources s by applying a mixing matrix A to them.

x = As (4.1)

A is an unknown invertible square matrix that mixes the sources. It is the
goal of ICA to find the original sources by estimating the unmixing matrix
W = A−1, such that

Wx ≈ s (4.2)
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FIGURE 4.3: Comparative distribution of Non-Gaussian
sources to the distribution of linear combination of those.

The weights of matrix W are iteratively updated so that the resulting re-
constructed sources s either share minimum information (in the case of Info-
Max algorithm) or are maximally non-Gaussian (FastICA algorithm).

There are several assumptions that must be met in order to perform ICA
decomposition of a signal (Langlois, Chartier, and Gosselin, 2010):

• The sources Si must be statistically independent.

• The mixing matrix A must be square and full rank. In other words, the
number of mixtures must be equal to the number of sources, and the
mixtures must be linearly independent of each other.

• The only source of stochasticity in the model is the source s.

• The data is centered.

• The source signals must have a non-Gaussian probability density func-
tion except for one single source that can be Gaussian.

The chosen algorithm is FastICA. It approximates the unmixing matrix by
maximizing the non-Gaussianity of components. Without the non-Gaussianity
assumption, the independent component analysis is not possible at all (Hyväri-
nen and Oja, 2000). That is nicely illustrated by a Figure 4.3 from Braun, 2020.

The convergence of components ŝ to the true sources s using FastICA is
guaranteed by the properties of the Central Limit Theorem. The distribution
of a sum of independent random variables with finite variance tends towards
a Gaussian distribution. In the case of estimation of one component, the rea-
soning that ŝ must be more Gaussian than s is following. The approximation
of the true sources, from equation 4.2 is:

ŝ = Wx (4.3)
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Let z = AT ·W. From the assumptions, A must be square and full rank, thus
W = A−1 is also square and full rank.

ŝ = W · x = W · As = (ATW)Ts = zTs

Since we assume the non-Gaussianity of the sources s, the approximation
ŝ is more Gaussian than s, and the maximization of the non-Gaussianity of ŝ
- a linear combination of sources s - will lead to inferring the true sources s.
The non-Gaussianily is measured by kurtosis in the used implementation by
mne package (Gramfort et al., 2013).

Principal Component Analysis

The number of channels in the original signal is huge and would require
a lot of computational resources to perform ICA on. Thus, prior to fitting
the FastICA algorithm, the dimensionality of the original matrix x is reduced
using Principal Component Analysis. The components of choice should ex-
plain at least 95% of the cumulative variance of the data. A benefit of PCA
is that the inversely reconstructed signal from the principal components will
reduce the initial noise present in the data.

Causal Bayesian Networks

Causal interactions of different brain regions, both prior to and past to oc-
currence of IEDs was studied using Causal Bayesian Networks (CBN)( Pearl,
2009). A CBN is a graph formed by nodes representing random variables
that are connected by links, denoting causal influence. A random variable Y
is said to be caused by X if Y depends on X for its value. The causal relations
between two components can be expressed visually using directed acyclic
graphs (DAGs).

Consider two random variables, X and Y. The cause-effect relationship is
inferred from the joint distribution of these two, usually measured by corre-
lation. However, it is not clear whether X → Y or Y → X.

The cause-effect relation is possible to infer using the notion of Causal
Markov Condition (CMC). A node is independent of all variables which are
not effects or direct causes of that node, conditional on the set of all its direct
causes (Mumford and Ramsey, 2014).

Consider a set of nodes X, Y, and Z.
In case when P(X|Y) ̸= P(X)→ X ⊥̸⊥ Y, one can draw an edge between X

and Y, depicting the possible relation they hold in a DAG. The same logic can
be applied to X and Z and Y and Z. There are three possible graphical models
that may arise knowing these dependencies (Figure 4.4): it is not clear what
form of dependency they hold: whether they form a chain (X → Y → Z)
(Figure 4.5), a collider (X → Y ← Z) (Figure 4.7), or a fork (X ← Y → Z)
(Figure 4.6).
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FIGURE 4.4: Unde-
fined graph. FIGURE 4.5: Chain.

FIGURE 4.6: Fork.
FIGURE 4.7: Col-

lider.

The usage of d-separation can differentiate these cases. Dependency sepa-
ration, or d-separation, describes the dependence between two nodes or sets
of nodes when conditioning on another set of nodes or the empty set. Us-
ing CMC, one can connect the joint distribution properties of the variables to
their relationship in a DAG.

Thus, if X ⊥̸⊥ Y, but X⊥⊥ Z|Y, then Y is said to d-separate X and Z.
There are three possible relationships that can arise: chain, fork, and col-

lider. To distinguish between the cases of fork, chain, and collider, one should
have a look at conditional distributions of all the pairs of random variables.

A chain is formed if all pairs of variables are dependent Y ans Z (P(Z =
z|Y = y) ̸= P(Z = z)), X and Z (P(X = x|Z = z) ̸= P(X = x)), and X and Y
(P(X = x|Y = y) ̸= P(X = x)), but are independent given the middle node
Y (P(Z = z|X = x, Y = y) = P(Z = z|Y = y)).

In the case of fork the following dependencies should be satisfied: X and
Y are dependent (P(Y = y|X = x) ̸= P(Y = y)), Y and Z are dependent
(P(Y = y|Z = z) ̸= P(Y = y)) , Z and X are dependent (P(Z = z|X = x) ̸=
P(Z = z)) , but X and Z are independent conditioned on Y (P(X = x|Z =
z, Y = y) = P(X = x|Y = y)).

In the case of collider the following dependencies should be satisfied: X
and Y are dependent (P(Y = y|X = x) ̸= P(Y = y)) , Y and Z are dependent
(P(Y = y|Z = z) ̸= P(Y = y)) , Z and X are independent (P(Z = z|X =
x) = P(Z = z)) , but X and Z are dependent conditioned on Y (P(X = x|Z =
z, Y = y) ̸= P(X = x|Z = z)).
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Application

The application of causal analysis to the current task was made to test for
a presence of a chain the following hypothesis: whether a brain state at the
moment t0 is a cause of a brain state at time t0 + tau, which causes a state at
t0 + 2 · tau. Since not all the components presented abnormal activity during
the IEDs, it was inefficient to run the causal analysis algorithm on all the com-
binations of components by three. Moreover, the components representing
artifacts should be removed. Thus, only a subset of components was chosen
for the analysis.

A component was chosen based on its activity during IEDs. The ones
presenting abnormal behavior were later tested for the presence of a causal
relationship. The abnormality was estimated based on the span and devia-
tion of a component during IEDs. An example of all components is visible in
Appendix C.1, and the chosen significant components in Appendix C.2.

Every random variable represents a set of values a component takes across
all the IEDs on a particular timestamp relative to the start of discharge. A
node in a graph is represented by this random variable.

It is best illustrated by an example. Let X be a random variable repre-
senting the state of component №1 10 ms before an IED. Then, with a time
delay of 0.1 ms, a random variable Y represents a state of component №2 at
10 + 0.1 = 10.1 ms, and a random variable Z represents a state of component
№3 at 10 + 0.1 · 2 = 10.2 ms. A time delay, denoted as τ, is shifted from 0.1
to the length of the window. An algorithm for causal interaction detection is
performed for every combination of all the components by three, forming a
chain ICAX[t0]→ ICAY[t0 + τ]→ ICAZ[t0 + 2 · τ].

Stimulus-based causal inference

In the case of causal analysis on iEGG data the problem of latent con-
founders arises from the limited positioning of electrodes as well as the num-
ber of recording points. Although the epileptic activity is later represented
by components, it is impossible to explicitly observe all the sources.

A confounder is a variable that influences both the supposed cause (inde-
pendent variable) and effect (dependent variables), causing a spurious asso-
ciation between them. An example of a confounding variable can be found
in the relationship between alcohol use and lung cancer (Steinke, 2019). The
strong association between alcohol use and cancer does not imply a cause-
effect relationship between them. The presence of a confounding variable
- smoking - affects alcohol consumption because the individuals, who drink
often, are more likely to smoke, and the smokers are more likely to get cancer.

The utilized Stimulus-based causal inference (SCI) algorithm was chosen
to detect the causal events with the presence of latent confounders (Grosse-
Wentrup et al., 2015). The initial brain state at timestamp t0 is regarded as a
stimulus.

A sample test for a chain X(ICA1[t0])→ Y(ICA2[t0 + τ])→ Z(ICA3[t0 +
2 · τ]) is conducted as following. Initially, the strength of correlation between
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the cause X and the effect Z is measured using correlation coefficient and re-
jected when the resulting p-value is smaller than significance level αrej. Later,
the partial correlation of X and Z conditioned on Y is measured: X and Z are
regressed on Y, and the correlation of the residuals eX and eZ is recorded.
The residuals do not contain the variability in X and Z explained by Y. If
the residuals are uncorrelated, one can conclude that X ⊥⊥ Z|Y. Thus, a
chain X → Y → Z is formed. Otherwise, X ⊥̸⊥ Z|Y. The partial correla-
tion measures conditional independence, and if its p-value was lower than
significance level αacc, then dependence was rejected.

After a chain is detected, the corresponding starting point of the causal
event, along with the time delay and the starting component, are recorded.
Out of these causal interactions, a mapping is formed that states the time de-
lay and starting component in correspondence with the number of recorded
causal events. The pseudocode for the analysis can be found in Grosse-
Wentrup et al., 2015.

Inverse decomposition: component to channel map-
ping

The original dataset, denoted by a matrix x, is an m by n matrix, where
m is the number of original channels and n is the duration of a signal. Later,
a linear operator - the unmixing matrix W - is inferred using FastICA and
applied to the data to get the independent sources s.

s = W · x

The decomposed sources s present brain activity on the corresponding com-
ponents. The source matrix s is a k by n matrix, where k is the number of
decomposed components and n is the duration of a signal.

The pseudo-inverse of W is the matrix A - the linear operator that maps
independent sources s to the original data x.

x = A · s

The following intuition was applied to map the chosen components to
channels of the original signal. Every independent component is a composi-
tion of the original channels. A jth column in the mixing matrix A conveys
each original channel’s weight forming a component j. Thus, an entry [i, j]
of A is a contribution of the jth channel to component i. One can infer the
location of a component by analyzing the weight each channel contributes
to its composition. A spanned region was proposed based on the weights of
channels to a composition of the source components.

When performing a causal analysis, the source component is recorded ev-
ery time the chain starting on it is detected. The components were sorted by
frequency of being source nodes. Later, the top three of them are considered
to span a potential IED source. The names of inversely inferred channels are
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reported to a clinician at the end of analysis execution and saved into a text
file locally.
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Chapter 5

Results

Hypothesis testing

After the causal modeling, the distribution of the causal events relative
to an IED was analyzed. The averaged results were normalized per patient
according to the number of markings for windows 100 and 500 ms. The dis-
tributions are visible in Appendix D.1 and D.2.

Figure 5.1 shows the distribution of causal interactions starting at corre-
sponding timestamps relative to an IED along with the activity of chosen
components. As assumed, the causal activity is greater before an IED and
decreases afterward. The component that has most frequently been detected
as a source node of generated activity is ICA010. The channels that put the
most weight on the component ICA010 are RTC5-6 and RTB 5-7, visible in
Figure 5.2.

The above coincide with the channels of the marked IEDs by a clinician,
although the model did not have the information about them.

The results show that the causal activity increases before a discharge and
decreases afterward. Based on the observed activity trends, five hypotheses
were established :

1. H0: number of causal interactions pre-IED = number of causal interac-
tions post-IED

FIGURE 5.1: Number of causal interactions relative to the start
of IED vs. averaged component state during the IEDs, patient

№10.
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Test name pval100 H0 rejected pval500 H0 rejected
pre-IED = post-IED 10−5 True 10−5 True

pre-IED in wake = post-IED wake 2 · 10−4 True 10−5 True
pre-IED in sleep = post-IED sleep 10−5 True 10−5 True

post-IED in sleep = post-IED wake 0.488 False 10−5 True
pre-IED in sleep = pre-IED wake 0.103 False 10−5 True

TABLE 5.1: Hypothesis testing results: pval100 corresponds to
the tests on the distributions with a window of length 100 ms

and pval500 - to those of length 500 ms.

2. H0: number of causal interactions pre-IED = number of causal interac-
tions post-IED in the wake state

3. H0: number of causal interactions pre-IED = number of causal interac-
tions post-IED in the sleep state

4. H0: number of causal interactions post-IED during sleep = number of
causal interactions post-IED in the wake state

5. H0: number of causal interactions pre-IED during sleep = number of
causal interactions pre-IED in the wake state

The number of causal interactions was collected across all the subjects in
wake and sleep states correspondingly.

Firstly, the window of 100 ms preceding and following an IED was ana-
lyzed for causal activity. However, the results showed the potential increase
in the number of causal interactions starting earlier. That is the reason why
the window was extended to half a minute.

The statistical hypothesis test of choice is the permutation test. Permuta-
tion tests are non-parametric tests that rely solely on the assumption of ex-
changeability (Wikipedia contributors, 2022). A test is conducted as follows.
The difference in test statistics between the groups is tested for significance
using subsampling. In the case of the first hypothesis, the random variable
XA would correspond to number of causal interactions preceding an IED and
XB - to that following an IED. The test statistic of choice in mean. The dif-
ference in means from different groups is denoted as Tobs. Then, each group
was randomly subsampled k times, and the same statistic for a subsample
was calculated. As a result of k permutations, we get the sample distribution
of the difference in statistics between groups A and B. The one-sided p-value
of the test is calculated as the proportion of sampled permutations, where
the difference in means is greater than Tobs. For a significance level α, in case
when Tobs is not contained within (1− α)× 100% of recorded differences,the
H0 was rejected and H1 was accepted, stating that the statistics differ across
the groups.
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FIGURE 5.2: Proposed resection area in case of patient №8.

Epileptogenic region localization

The resection area was later compared to the reported source of causal
activity. For each component, the five channels with the biggest weight were
chosen. The proposed onset-generating area in the case of patient №8 is vis-
ible in Figure 5.2, and the results of the same analysis in patients №1 and 10
are visible in Appendix B.

The results on proposed channels were consistent across different win-
dows of analysis. Moreover, the model is did not take into consideration the
channels where the markings were detected. Nevertheless, the channels ob-
tained by the inverse decomposition coincided with the ones considered as
significant by a clinician.
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Chapter 6

Conclusion

The results of the study can be applied and developed in different di-
rections. The noted increase of interactions before an IED can be used for
predictability of discharges. The results showed a statistical difference be-
tween the causal activity preceding and following an IED, as well as across
awareness states.

The second benefit is a computer assistant for a clinician during the de-
tection of the epileptogenic region. The obtained channels will shade a light
onto the potential resection area supporting a clinician during diagnosing.
One of the consequences of the proposed area localization is potential reduc-
tion of the resection region.

Limitations

The data of a patient are hard to obtain, and the time required for a clini-
cian to label the IEDs is of high value. The number of possible combinations
of chosen components was enormous. Thus, an experiment could last up to
a week in some cases.

Further steps

For the evaluation of the model’s accuracy, the correct determination of
the epileptogenic region in 3D must be defined and later compared to the true
removed area. The reported recurrence of seizures after the resection will
evaluate the effectiveness of estimations. Another investigation track would
be analyzing causal activity with a longer window, as the activity trends did
not show their start 500 ms before an IED.
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Appendix A

TABLE A.1: Dataset description.

Patient № Channels № State Duration, minutes Markings №

1 148 sleep 112 2602
wake 115 7009

2 128 sleep 132 1664
wake 132 1709

3 101 sleep 168 711
wake 168 1283

4 131 sleep 130 11269
wake 130 486

5 162 sleep 105 765
wake 105 2722

6 109 sleep 156 819
wake 156 289

7 145 sleep 117 2235
wake 22 1533

8 124 sleep 137 1997
wake 137 356

9 111 sleep 153 652
wake 153 530

10 138 sleep 123 5728
wake 122 5084
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Appendix B

FIGURE B.1:
MRI based
3D scheme
of SEEG im-
plantation:
patient №

10.

FIGURE B.2:
Cortical re-
construction
from MRI of
the patient

№10.
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FIGURE B.3: Proposed resection area in case of patient №10.

FIGURE B.4:
MRI-based
3D scheme
of SEEG im-
plantation:
patient № 1.

FIGURE B.5:
Cortical re-
construction
from MRI of
the patient

№1.
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FIGURE B.6: The area of most frequent IEDs marked by a clini-
cian, patient №1.
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FIGURE B.7: The area of most frequent IEDs proposed by an
algorithm, patient №1.



24

Appendix C

FIGURE C.1: Averaged state of all the components during all
the IEDs along with the averaged state of channel POL RTD2

during all the IEDs. Patient №8.

FIGURE C.2: Averaged state of chosen significant components
during all the IEDs along with the averaged state of channel

POL RTD2 during all the IEDs. Patient №8.
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Appendix D

The following is the averaged distribution of causal activity across all the
patients. The number of detected interactions was normalized by the number
of markings for every patient individually. The normalization step reasoning
is that the larger the number of markings, the bigger the probability of detect-
ing an interaction. Thus, a patient with 2602 markings could have prevailed
over a patient with 530 markings skewing the distribution and making it
non-representative. The y axis could not be interpreted as a number of causal
interactions, so it was removed.

FIGURE D.1: Averaged and normalized distribution of causal
interactions relative to the beginning of a chain: 100 ms.

FIGURE D.2: Averaged and normalized distribution of causal
interactions relative to the beginning of a chain: 500 ms.
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