UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

Development of grid computing
middleware for Android smartphones

Author: Supervisor:
Volodymyr CHERNETSKYI Oleg FARENYUK

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

& 1z | APPLIED
)5/ : | SCIENCES
Z }- _‘ S | FACULTY
J”’Bspc“‘é

Lviv 2021

https://ucu.edu.ua
https://apps.ucu.edu.ua
https://apps.ucu.edu.ua

Declaration of Authorship

I, Volodymyr CHERNETSKYI, declare that this thesis titled, “Development of grid
computing middleware for Android smartphones” and the work presented in it are
my own. I confirm that:

This work was done wholly or mainly while in candidature for a research de-
gree at this University.

Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

Where I have consulted the published work of others, this is always clearly
attributed.

Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

I have acknowledged all main sources of help.

Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

ii

“In life, nothing good comes out of hurrying.”

Shikamaru Nara

iii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences
Department of Computer Sciences

Bachelor of Science

Development of grid computing middleware for Android smartphones

by Volodymyr CHERNETSKYI
Abstract

Educational institutes that work with computational science problems need com-
puting power. Volunteer computing is a trend of donating computer resources by
forming a distributed system. This thesis aims to develop middleware for the grid of
Android smartphones. In this context, a computer grid is defined as the distributed
computing system formed of geographically dispersed heterogeneous computers
connected by a global network. Bidirectional client-server communication is pro-
posed to shift from the client pulling the work unit to the server pushing it. As a
result, a grid computing system for Android smartphones is designed considering
the specifics of the Android operating system.

HTTPS://UCU.EDU.UA
https://apps.ucu.edu.ua
https://apps.ucu.edu.ua

v

Acknowledgements

I want to thank my classmate Yulianna Tymchenko for helping me derive this
thesis’s subject.

Big thanks to my supervisor Oleg Farenyuk for mentoring the development of
the thesis on all its stages.

I am grateful to my classmates Andrii Koval, Hermann Yavorskyi, and Mykola
Biliaiev for the care we showed to the progress every one of us made.

Lastly, I want to thank my best friend Ostap Viniavskyi for all the help and sup-
port he provided during the time we know each other.

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

Contents v

List of Figures vii

List of Tables viii

List of Abbreviations ix

1 Introduction 1

1.1 Motivation o e e e e e 1

1.2 Problem e e e 1

1.3 Goals e e 1

2 Background Information 3

2.1 High Performance Computing 3

211 Performance Measuring 3

212 TOPB00. . . . o oo e 3

213 ParallelComputing 3

214 Distributed Computing 4

2.2 Android Operating System 4

2.2.1 Processes and Application Lifecycle 4

3 Related Works 6
3.1 Folding@home: Lessons From Eight Years of Volunteer Distributed

Computing 6

3.2 BOINC: A System for Public-Resource Computing and Storage 6

3.3 Middleware for Grid Computing on Mobile Phones 7

4 Proposed Solution 8

41 Android Application Considerations 8

42 NetworkTopology 9

43 RedundantComputing 9

4.4 Bidirectional Client-Server Communication 10

441 PushModel e 10

442 Healthchecks 10

4.4.3 Client-Server Communication 11

444 Worker Node Lifecycle 12

45 Security 13

4.6 Fault Tolerance
5 Conclusion

Bibliography

Vi

List of Figures

41 NetworkTopology
4.2 Client-Server Communication v v v v v v v i e
43 Worker Node Lifecycle

vii

viii

List of Tables

41 Workernodestates. e 12

iX

List of Abbreviations

ART
BOINC
CPU
FLOPS
HTTP
HPL
HPL-AI
IC
IEEE
IPS
LAN
MPP
NAT
0S
RFC
TCP

Android Runtime

Berkeley Open Infrastructure for Network Computing
Central Processing Unit

Floating-point Operations Per Second

Hyper Text Transfer Protocol

High-Performance Linpack

High-Performance Linpack Artificial Intelligence
Integrated Circuit

Institute of Electrical and Electronics Engineers
Instructions Per Second

Local Area Network

Massively Parallel Processor

Network Address Translator

Operating System

Request for Comments

Transmission Control Protocol

Dedicated to all the Faculty of Applied Sciences class 2017
who made this 4-year journey.

Chapter 1

Introduction

1.1 Motivation

Smartphones are the most popular way to browse the web since 2017 (Stats, 2021a).
Android OS is dominating the mobile operating system market since 2012, running
on around three-quarters of all smartphones since 2017 (Stats, 2021b). The latest mo-
bile CPU models of the most popular mobile CPU manufacturer Qualcomm (IANS,
2021) provide eight cores with up to 3.2 GHz clock speed (Qualcomm, 2021) - such
frequencies are comparable with modern desktop CPUs. However, out of ten most
popular use cases for smartphones, the most demanding one - gaming, resides at a
sixth position (axway, 2017). Other use cases in the survey do not fully utilize all the
computing power concentrated in our daily drivers.

1.2 Problem

Considering the computing performance of the most popular active distributed com-
puting projects, scientific computing problems in fields ranging from cryptography
to molecular biology require TeraFLOPS of computer performance (Wikipedia con-
tributors, 2021). Lots of academic institutions having limited funding cannot afford
computers capable of such performance. Volunteer computing allows academic
institutions to reach those numbers without spending money on expensive super-
computers. Volunteer computing is a concept of donating computing resources to
projects, which use those resources to do distributed computing (BOINC, 2018).
Grids of Android smartphones may be responsible for a significant amount of re-
sources in volunteer computing projects.

Smartphone users are getting more and more concerned with the time they spend
using their gadgets (Trends, 2021). Apps like Forest, which gamify the process of
staying out of the smartphone, have dozens of millions of installs and win multi-
ple awards (Google, 2021). Donating smartphone computing power to a computing
grid may be gamified to spend less time on a smartphone while carrying out scien-
tific computations.

1.3 Goals

The goal of the thesis is to develop an Android middleware for grid computing. The
thesis covers client application joining/leaving the computing grid, receiving and
computing the work units, sending results to the server. The server responsibilities
covered in the thesis are keeping track of the worker nodes, sending the work units,
and collecting the results. Dividing the problem into work units and aggregating the

https://www.forestapp.cc/

Chapter 1. Introduction 2

collected results into a problem solution are not covered in the thesis as those are not
the responsibilities of the middleware.

Chapter 2

Background Information

2.1 High Performance Computing

2.1.1 Performance Measuring

Computer performance can be measured in instructions per second or floating-point
operations per second. In computational science, FLOPS is a more accurate rep-
resentation of CPU numerical performance. The IEEE Standard for Floating-Point
Arithmetic defines five basic floating-point number formats, two of which, binary
32-bit (single precision) and binary 64-bit (double precision), are widely used (“IEEE
Standard for Binary Floating-Point Arithmetic” 1985). For this thesis, FLOPS is the
number of 64-bit floating-point operations per second, as it is in the TOP500 super-
computer list.

2.1.2 TOP500

The TOP500 table biannually shows the 500 most powerful supercomputers in the
world. The performance of the supercomputers is measured using the LINPACK
benchmark. Since June 2005, every supercomputer on the list has achieved at least
one teraflops of performance. Since June 2019, every supercomputer on the list has
achieved at least one petaflops of performance (TOP500, 2020c). Although the fastest
supercomputer (as of November 2020) on the list, Supercomputer Fugaku, achieved
442,010 teraflops in the LINPACK benchmark (TOP500, 2020b), it reached 2 exaflops
in the HPL-AI benchmark (Dongarra, 2020).

2.1.3 Parallel Computing

Moore’s law predicts that the number of transistors in an integrated circuit doubles
about every two years (Moore, 1975). Along with the number of transistors in an IC,
computer performance should also grow exponentially. Since 1993, the performance
of the Ne1 TOP500 supercomputer has roughly doubled every 14 months (TOP500,
2020c).

CPU performance increases from the mid-1980s until 2004 were achieved mainly
by scaling its frequency. After the end of the frequency scaling, Moore’s law was still
in effect as manufacturers started to increase the number of CPU cores. As a result,
parallel computing has become the dominant paradigm in computer architecture in
the form of multi-core processors (Asanovic et al., 2006).

A massively parallel processor is a computer with multiple processors connected
via the network. MPP architecture is the second most popular TOP500 supercom-
puter architecture (TOP500, 2020a).

http://www.netlib.org/utk/people/JackDongarra/faq-linpack.html
http://www.netlib.org/utk/people/JackDongarra/faq-linpack.html
https://www.r-ccs.riken.jp/en/fugaku/

Chapter 2. Background Information 4

2.1.4 Distributed Computing

Contrary to parallel computing, in distributed computing, the processors do not
have access to a shared memory; processors communicate by passing messages. As a
result of the COVID-19 pandemic, one of the biggest distributed computing projects,
Folding@home, surpassed one exaflops threshold making it the world’s first exas-
cale computing system (Hruska, 2020).

A computer cluster is a set of network-connected computers that behave as a
single distributed system. The most common way to set up a cluster is to connect
homogeneous computers using LAN. Cluster architecture dominates system and
performance share in the TOP500 supercomputer list (TOP500, 2020a).

A computing grid is geographically dispersed, usually heterogeneous computers
connected by a global network that form a distributed computing system. Contrary
to a computer cluster, computer grid nodes are loosely coupled. The name "grid"
comes from the definition, which states that the computing resources should be
available as electricity in power grids. Because of limited connectivity between com-
puting nodes, grid computing deals mainly with embarrassingly parallel problems,
which do not require internode communication. Because of nodes” high volatility,
the opportunistic approach is the most popular, where work units are matched ran-
domly, and there are no guarantees regarding the availability of resources at a given
time. In a quasi-opportunistic approach, nodes are coordinated to achieve an in-
creased quality of service. Grids are often constructed with general-purpose mid-
dleware.

Jungle computing is a form of high-performance computing where computations
are offloaded across a cluster, grid, and cloud computing (Seinstra et al., 2011).

2.2 Android Operating System

2.21 Processes and Application Lifecycle

Unless specified otherwise, the Android application runs its own Linux process. The
process is created when some application code needs to be run and will remain run-
ning until the user no longer requires it or the system needs to reclaim its resources.

A fundamental feature of Android is that the application does not directly con-
trol its process’s lifetime. The application process’s lifetime is determined by the
Android OS considering the parts of the application that are running, how impor-
tant those are to the user, and how many system resources are available at the time.

A process importance hierarchy exists to determine the order in which processes
will be killed in case of low system resources. Application process importance hier-
archy divides every process into one of the four categories (in order of importance):

1. A foreground process is the one with which the user is interacting, which is at
the top of the screen.

2. A visible process is doing the work that the user is aware of. For example, if
there is a dialogue window before some application, then the dialogue window
is part of a foreground process, and that application is running in a visible
process.

3. A service process is not directly visible to the user. However, it is doing things
that the user cares about - background network data upload/download, for
example. Services running for a long time (such as 30 minutes or more) may

Chapter 2. Background Information 5

be demoted in the importance hierarchy to allow their process to drop to the
cached list. This helps avoid situations where long-running services that use
excessive resources prevent the system from delivering a good user experience.

4. A cached process is one that the system considers not currently needed for
the user, so the system is free to kill it when resources are needed elsewhere.
Usually, these are the only processes involved in resource management: a
well-running system will have multiple cached processes available for efficient
switching between applications and regularly kill the oldest ones as needed.

(Developers, 2020)

Chapter 3

Related Works

3.1 Folding@home: Lessons From Eight Years of Volunteer
Distributed Computing

Folding@home (Beberg et al., 2009) is the volunteer computing project that was the
first to achieve the exaflops scale performance. Released in the year 2000, it faced
lots of problems with its initial design. Being developed before the establishment
of NATs and firewalls, Folding@home volunteers had issues with connecting to the
work server. Work servers are stated to be a system bottleneck so that in 2004 col-
lection servers were introduced to collect finished work units in case of work server
failure. Folding@home distributes work unit cores as a platform-specific binary. Op-
timizing by hand assembly code for each CPU indeed results in significant speedups.
However, the need to optimize the code manually slows down the introduction of
the new platforms. Moreover, it may result in a loss of the noticeable amount of
volunteer power after a major system update on volunteer machines. Application
checkpointing is a feature that minimizes the amount of work lost in case the client
goes down. This feature is not used to its full extent. The project can be improved
by sending the already computed work unit state on the client’s graceful shutdown
to the backend, which will assign another client to continue computations.

3.2 BOINC: A System for Public-Resource Computing and
Storage

Released in 2002, BOINC (Anderson, 2004) is open-source middleware operating
public-resource computing projects. Comparing to Folding@home, BOINC has a
more mature architecture. It makes it easy to create a work unit and support mul-
tiple applications. The client application can be run in multiple ways to tailor for
specific requirements of the volunteer. BOINC introduces support for a redundant
computing mechanism for identifying and rejecting erroneous results. Furthermore,
it provides a homogeneous redundancy feature to force executing the work units
only on the same platforms to avoid differences in results caused by differences in
platforms.

Focus on rewarding the participants forces BOINC to make unnecessary oper-
ations. When redundant computing is enabled, once the quorum establishes the
canonical result, clients still computing will continue to do so, and their results will
be validated to reward participants.

Chapter 3. Related Works 7

3.3 Middleware for Grid Computing on Mobile Phones

The work (Masinde, Bagula, and Ndegwa, 2010) designs a grid computing mid-
dleware for mobile phones. The role of the server control plane belongs to one of
the phones in the grid. If this phone leaves the grid, the calculations are lost be-
cause the system state is not replicated. The system relies heavily on peer-to-peer
communications, which is hard to achieve with geographically disperse nodes that
communicate over the global network because of the NATs prevalence.

Chapter 4

Proposed Solution

Throughout this chapter, the terms client/worker/node and server/control plane
are used interchangeably, having the same meaning.

4.1 Android Application Considerations

Unlike desktop computers with a constant power supply, Android smartphones rely
on a battery. Android smartphones also do not always use an unmetered network
connection like Wi-Fi. In these cases, the mobile data plan charges may apply. To
avoid draining volunteer’s battery and paying for metered networks popular An-
droid solutions like BOINC and DreamLab work only when the device is connected
to Wi-Fi and power supply (BOINC, 2020; Vodafone, 2021). In such a case, smart-
phone availability for the cluster is limited not only by these conditions but also
by the times when the user consciously opens the app. The latter condition is pro-
posed to be the single one. If the user consciously launches the app, the smartphone
should be available for the grid even on a low battery and connected to a metered
network. Considering the specifics of the Android process lifecycle (see 2.2.1), it is
recommended to leave the app running in the foreground to avoid it being killed.

Chapter 4. Proposed Solution 9

4.2 Network Topology

Worker nodes are connected to the control plane in a star network topology: there
is only a connection between the nodes and the control plane. The system does
not provide direct internode communication routes. Moreover, it may not even be
possible because of the NATSs.

FIGURE 4.1: Star network topology: every worker node connects only

to the control plane.
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International, 3.0 Unported, 2.5
Generic, 2.0 Generic and 1.0 Generic license. Original image was created by Crates.

4.3 Redundant Computing

Due to the high volatility of Android smartphones, the smartphone may become
unavailable during the work unit computations. Thus redundant computing is re-
quired. The work unit is sent to a randomly selected 21 + 1 idle worker node to com-
pute. As soon as the control plane receives the n + 1 similar result, it is accepted as
a canonical result. If the timeout passes or every worker submits its result and there
is no quorum, the worker unit is resent to a new set of random 27 4 1 idle worker
nodes (the sets may interfere, but it is doubtful in case there is a massive number of
nodes). The results obtained in a previous work unit worker group are not consid-
ered while selecting a canonical result from a new work unit worker group. If the
work unit cannot get a canonical result after k cycles of reassigning the work unit to
a new work unit worker set, the control plane considers the work unit invalid and
drops it from a queue.

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/2.5/deed.en
https://creativecommons.org/licenses/by-sa/2.5/deed.en
https://creativecommons.org/licenses/by-sa/2.0/deed.en
https://creativecommons.org/licenses/by-sa/1.0/deed.en

Chapter 4. Proposed Solution 10

4.4 Bidirectional Client-Server Communication

44.1 Push Model

Existing solutions rely on clients pulling (requesting) the work unit from the server
(Beberg et al., 2009; Anderson, 2004). Unless the client automatically requests the
new work unit after completing the previous one, the system loses computational
power. The push model does not have such drawbacks. Moreover, by forcing clients
to change the work unit they are working on, it is possible to avoid computing units
that have already established the canonical answer. To enable the push model the
bidirectional client-server communication is required. To provide bidirectional com-
munication, WebSocket protocol is proposed.

WebSocket protocol provides a full-duplex communication channel over a sin-
gle TCP connection. Although WebSocket and HTTP are different, WebSocket is
designed to work over HTTP ports and support HTTP proxies and intermediaries,
thus making it compatible with the HTTP protocol (Fette and Melnikov, 2011). The
WebSocket handshake uses the HTTP Upgrade header to change from the HTTP
protocol to the WebSocket protocol to achieve compatibility.

4.4.2 Healthchecks

Healthchecks are implemented using WebSocket control frames. WebSocket control
frames have a payload length of 125 bytes or less (Fette and Melnikov, 2011), so they
use only a tiny part of the available bandwidth. With the interval in fo milliseconds
server sends Ping frames to the client. If the client responds with the Pong frame,
the server considers it alive. If there is no Pong response during k subsequent Ping
requests (kto milliseconds), the client is considered dead. After m, where m > k, sub-
sequent Ping requests (mty milliseconds) to the dead client, server closes the connec-
tion.

Chapter 4. Proposed Solution 11

4.4.3 Client-Server Communication

Clent |1 Tp GET Request S&MVel
Ll } -
1) * Handshake (HTTP Upgrade) -
L] ‘ L
. Ping :
L '{ -
2) * Pong :
L] } L
: Work Unit Push :
L] { w
3) - Acknowledgement :
L] } Ll
. Send Result .
Ll } -
4) * Acknowledgement .
L] { L
8) ! One Side Closes Connection
= ol » .

FIGURE 4.2: Client-server communication.

1. The client joins the grid by sending the HTTP GET request. The server answers
upgrading the HTTP to the WebSocket protocol.

2. After initializing under the grid, the server continuously sends Ping frames to
determine the client’s state.

3. The server sends the work unit for the client to compute. Client answers con-
firming the receival of the work unit.

4. The client sends the computed result of the work unit to the server. Server
answers confirming the receival of the result.

5. The client closes the WebSocket connection if it decides to leave the grid vol-
untarily, or the server closes the connection if the client is considered dead for
a long time.

Chapter 4. Proposed Solution 12

4.4.4 Worker Node Lifecycle

Alive:
| computing |

Dead |

| Disconnected |

FIGURE 4.3: Worker Node Lifecycle.

TABLE 4.1: Worker node states.

State Condition
Alive The client answers the Ping frames from the server.
Computing The client is alive computing the work unit,
and its work unit does not yet have a canonical result.
Idle The client is alive and its work unit has accepted a canonical
result, or the client does not yet have a work unit to compute.
Dead The client is not answering the Ping frames.
Disconnected | The alive client may voluntarily leave the computing grid,
or the server closes the connection if the client is dead for too long.

Chapter 4. Proposed Solution 13

4.5 Security

Work units and results are encrypted in transfer by WebSocket Secure. Checksums
of the work units and results are provided to verify the data integrity.

No single node in a grid can be trusted. Thus redundant computing (see 4.3)
is applied. However, relying on the majority makes the system vulnerable to the
51-percent attack vector.

The control plane adds excessive random data to the work unit before sending
it to the worker. Thus checksums of the same work unit will differ from worker to
worker, making it harder for the malicious workers to check whether they are in the
same work unit group.

4.6 Fault Tolerance

The fault tolerance of the control panel is provided by replicating the server instances
load balancing between them. Database that holds the system state is distributed
across multiple servers.

Worker nodes are replicas of each other, so the worker nodes are fault-tolerant if
enough are alive to take a work unit.

14

Chapter 5

Conclusion

This work examines the models of distributed computing and available on the mar-
ket systems for volunteer computing. The shifting from the pull model to the push
model in grid computing is proposed. A grid computing system for Android smart-
phones is designed with their specifics in mind.

The work can be extended to achieve a quasi-opportunistic system to make it
suitable for problems that cannot tolerate a computing node failure. Decentralizing
the system is also possible by removing the control plane, moving its responsibilities
to the worker nodes, and enabling peer-to-peer communication.

15

Bibliography

Anderson, David P (2004). “Boinc: A system for public-resource computing and stor-
age”. In: Fifth IEEE/ACM international workshop on grid computing. IEEE, pp. 4-10.

Asanovic, Krste et al. (2006). “The landscape of parallel computing research: A view
from Berkeley”. In.

axway (2017). 10 Years On From iPhone® Launch, Axway Survey Examines Consumer
View of Smartphones. URL: https : / / www . axway . com/ en / company / media /
2017/press-release-10-years- iphoner - launch- axway - survey - examines -
consumer-view (visited on 05/15/2021).

Beberg, Adam L et al. (2009). “Folding@ home: Lessons from eight years of volun-
teer distributed computing”. In: 2009 IEEE International Symposium on Parallel &
Distributed Processing. IEEE, pp. 1-8.

BOINC (2018). Volunteer Computing. URL: https : //boinc . berkeley . edu/trac/
wiki/VolunteerComputing (visited on 05/15/2021).

— (2020). Android FAQ. URL: https://boinc . berkeley.edu/wiki/Android _FAQ
(visited on 05/15/2021).

Developers, Android (2020). Processes and Application Lifecycle. Android Developers.
URL: https : //developer . android . com/ guide / components / activities /
process-1lifecycle (visited on 05/15/2021).

Dongarra, Jack (2020). HPL-AIL Results. URL: https://icl . bitbucket .io/hpl -
ai/results/ (visited on 05/15/2021).

Fette, Ian and Alexey Melnikov (2011). The websocket protocol.

Google (2021). Forest: Stay focused - Apps on Google Play. URL: https://play.google.
com/store/apps/details?id=cc.forestapp (visited on 05/15/2021).

Hruska, Joel (2020). Folding@Home Crushes Exascale Barrier, Now Faster Than Dozens of
Supercomputers. ExtremeTech. URL: https://www.extremetech. com/computing/
308332-foldinghome-crushes-exascale-barrier-now-faster-than-dozens-
of -supercomputers (visited on 05/15/2021).

IANS (2021). Qualcomm leads smartphone application processor market, Apple second |
Business Standard News. URL: https://www.business-standard.com/article/
international/qualcomm-leads-smartphone-application-processor-market
apple-second-121032100139_1.html (visited on 05/15/2021).

“IEEE Standard for Binary Floating-Point Arithmetic” (1985). In: ANSI/IEEE Std 754-
1985, pp. 1-20. DOTI: 10.1109/IEEESTD. 1985 . 82928.

Masinde, Muthoni, Antoine Bagula, and Victor Ndegwa (2010). “Middleware for
Grid Computing on Mobile Phones”. In: M-Science: Sensing, Computing and Dis-
semination. International Centre for Theoretical Physics, Trieste, Italy.

Moore, Gordon (1975). Progress In Digital Integrated Electronics. URL: http://www .
eng . auburn . edu/~agrawvd/COURSE/E7770_Spr07 /READ/Gordon_Moore_1975_
Speech.pdf (visited on 05/15/2021).

Qualcomm (2021). Snapdragon 8 Series Mobile Platforms. URL: https://www.qualcomm.
com/products/snapdragon-8-series-mobile-platforms (visited on 05/15/2021).

https://www.axway.com/en/company/media/2017/press-release-10-years-iphoner-launch-axway-survey-examines-consumer-view
https://www.axway.com/en/company/media/2017/press-release-10-years-iphoner-launch-axway-survey-examines-consumer-view
https://www.axway.com/en/company/media/2017/press-release-10-years-iphoner-launch-axway-survey-examines-consumer-view
https://boinc.berkeley.edu/trac/wiki/VolunteerComputing
https://boinc.berkeley.edu/trac/wiki/VolunteerComputing
https://boinc.berkeley.edu/wiki/Android_FAQ
https://developer.android.com/guide/components/activities/process-lifecycle
https://developer.android.com/guide/components/activities/process-lifecycle
https://icl.bitbucket.io/hpl-ai/results/
https://icl.bitbucket.io/hpl-ai/results/
https://play.google.com/store/apps/details?id=cc.forestapp
https://play.google.com/store/apps/details?id=cc.forestapp
https://www.extremetech.com/computing/308332-foldinghome-crushes-exascale-barrier-now-faster-than-dozens-of-supercomputers
https://www.extremetech.com/computing/308332-foldinghome-crushes-exascale-barrier-now-faster-than-dozens-of-supercomputers
https://www.extremetech.com/computing/308332-foldinghome-crushes-exascale-barrier-now-faster-than-dozens-of-supercomputers
https://www.business-standard.com/article/international/qualcomm-leads-smartphone-application-processor-market-apple-second-121032100139_1.html
https://www.business-standard.com/article/international/qualcomm-leads-smartphone-application-processor-market-apple-second-121032100139_1.html
https://www.business-standard.com/article/international/qualcomm-leads-smartphone-application-processor-market-apple-second-121032100139_1.html
https://doi.org/10.1109/IEEESTD.1985.82928
http://www.eng.auburn.edu/~agrawvd/COURSE/E7770_Spr07/READ/Gordon_Moore_1975_Speech.pdf
http://www.eng.auburn.edu/~agrawvd/COURSE/E7770_Spr07/READ/Gordon_Moore_1975_Speech.pdf
http://www.eng.auburn.edu/~agrawvd/COURSE/E7770_Spr07/READ/Gordon_Moore_1975_Speech.pdf
https://www.qualcomm.com/products/snapdragon-8-series-mobile-platforms
https://www.qualcomm.com/products/snapdragon-8-series-mobile-platforms

Bibliography 16

Seinstra, Frank J et al. (2011). “Jungle computing: Distributed supercomputing be-
yond clusters, grids, and clouds”. In: Grids, Clouds and Virtualization. Springer,
pp- 167-197.

Stats, StatCounter Global (2021a). Desktop vs Mobile vs Tablet vs Console Market Share
Worldwide. 2009 - 2021. URL: https://gs.statcounter.com/platform-market-
share#yearly-2009-2021 (visited on 05/15/2021).

— (2021b). Mobile Operating System Market Share Worldwide. 2009 - 2021. URL: https:
//gs .statcounter.com/os-market-share/mobile/worldwide/#yearly-2009-
2021 (visited on 05/15/2021).

TOP500 (2020a). Development Ouver Time. Architecture. URL: https : //www . top500 .
org/statistics/overtime/ (visited on 05/15/2021).

— (2020b). November 2020. TOP500. URL: https://www.top500.0org/lists/top500/
2020/11/ (visited on 05/15/2021).

— (2020c). Performance Development. URL: https://www.top500.org/statistics/
perfdevel/ (visited on 05/15/2021).

Trends, Google (2021). digital detox, digital minimalism. URL: https://trends.google.
com/trends/explore?date=all&q=digital’,20detox,digital’%20minimalism
(visited on 05/15/2021).

Vodafone (2021). Help with COVID-19 and cancer research. FAQs for Android users. URL:
https://www.vodafone.co.uk/mobile/dreamlab (visited on 05/15/2021).

Wikipedia contributors (2021). List of distributed computing projects — Wikipedia, The
Free Encyclopedia. URL: https : //en . wikipedia . org/w/ index . php 7 title=
List _of _distributed _computing _projects&oldid=1020340090 (visited on
05/15/2021).

https://gs.statcounter.com/platform-market-share#yearly-2009-2021
https://gs.statcounter.com/platform-market-share#yearly-2009-2021
https://gs.statcounter.com/os-market-share/mobile/worldwide/#yearly-2009-2021
https://gs.statcounter.com/os-market-share/mobile/worldwide/#yearly-2009-2021
https://gs.statcounter.com/os-market-share/mobile/worldwide/#yearly-2009-2021
https://www.top500.org/statistics/overtime/
https://www.top500.org/statistics/overtime/
https://www.top500.org/lists/top500/2020/11/
https://www.top500.org/lists/top500/2020/11/
https://www.top500.org/statistics/perfdevel/
https://www.top500.org/statistics/perfdevel/
https://trends.google.com/trends/explore?date=all&q=digital%20detox,digital%20minimalism
https://trends.google.com/trends/explore?date=all&q=digital%20detox,digital%20minimalism
https://www.vodafone.co.uk/mobile/dreamlab
https://en.wikipedia.org/w/index.php?title=List_of_distributed_computing_projects&oldid=1020340090
https://en.wikipedia.org/w/index.php?title=List_of_distributed_computing_projects&oldid=1020340090

	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Problem
	Goals

	Background Information
	High Performance Computing
	Performance Measuring
	TOP500
	Parallel Computing
	Distributed Computing

	Android Operating System
	Processes and Application Lifecycle

	Related Works
	Folding@home: Lessons From Eight Years of Volunteer Distributed Computing
	BOINC: A System for Public-Resource Computing and Storage
	Middleware for Grid Computing on Mobile Phones

	Proposed Solution
	Android Application Considerations
	Network Topology
	Redundant Computing
	Bidirectional Client-Server Communication
	Push Model
	Healthchecks
	Client-Server Communication
	Worker Node Lifecycle

	Security
	Fault Tolerance

	Conclusion
	Bibliography

