
UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

Comparative analysis of modern iOS
architectures in different development

stages

Author:
Andrii KOVAL

Supervisor:
Roxana MARKHYVKA

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2021

http://www.ucu.edu.ua
https://www.linkedin.com/in/andrwkoval/
https://www.linkedin.com/in/roxane-markhyvka-b7b142128/
http://researchgroup.university.com
http://department.university.com

i

Declaration of Authorship
I, Andrii KOVAL, declare that this thesis titled, “Comparative analysis of modern
iOS architectures in different development stages” and the work presented in it are
my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

ii

“The secret of success is to do the common thing uncommonly well.”

John D. Rockefeller Jr.

iii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Bachelor of Science

Comparative analysis of modern iOS architectures in different development
stages

by Andrii KOVAL

Abstract

Modern iOS development became much more versatile than it was several years ago.
There are lots of different frameworks, approaches, patterns and architecture which
can be used during the application development. In this thesis I aim to analyze most
popular architectures for iOS development, compare them with each other and find
out their benefits for different application and development stages.

HTTP://WWW.UCU.EDU.UA
http://department.university.com

iv

Acknowledgements
Thanks to my supervisor Roxana Markhyvka who helped me with deriving the-

sis’s subject and inspired me to write this work about iOS architectures.
I am grateful to my friends Hermann Yavoskyi and Volodymyr Chernetskyi for

supporting each other along this way.

v

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Motivation . 1
1.2 Problems . 1
1.3 Goals . 1
1.4 Background information . 2

1.4.1 UIKit . 2
1.4.2 OOP and SOLID . 2

2 Model-View architectures 3
2.1 Model View Controller . 3
2.2 Model View Presenter . 4

2.2.1 MVP vs MVC . 5
2.3 Model View ViewModel . 6

2.3.1 MVVM vs MVC . 8
2.3.2 MVVM vs MVP . 8

2.4 Model-View architectures + Coordinator 9
2.4.1 What is Coordinator? . 9

2.5 Conclusion . 10

3 More complex architectures 12
3.1 VIPER . 12
3.2 Clean Architecture . 14

4 Conclusion 16
4.1 Further works . 16

Bibliography 17

vi

List of Figures

2.1 MVC . 4
2.2 MVP . 5
2.3 MVP . 6
2.4 Coordinators . 10

3.1 VIPER . 13
3.2 Clean Architecture . 14

vii

Abbreviations and Definitions

MVC Model View Controller
MVP Model View Presenter
MVVM Model View ViewModel
MV Model View
OOP Object Oriented Programming
PoC Proof of Concept
(G)UI (Graphic) User Interface
UX User Experience
API Application Programming Interface
KVO Key Value Observing
MVP Minimum Viable Product
FRP Functional Reactive Programming
VIPER View Interactor Presenter Entity Routing
UIViewController Main Cocoa class to display separate screen.
Closure Inline function type in Swift Programming Language
RxSwift/RxCocoa 3rd party Swift framework for reactive programming.

viii

Dedicated to my Father, in loving memory. . .

1

Chapter 1

Introduction

1.1 Motivation

Information technology sphere develops extremely fast. Lots of technologies are
used to create various software in different domains and for specific purposes.

People everyday use their phones to communicate, search for information, watch
videos, play games, take photos and others. Mobile development companies create
applications with extreme pace. But lots of them don’t even have a chance to out-
shine the giant rivals, who possess millions of users.

Since the iOS development also is growing very fast as well, there are lots of new
and old approaches for application development, but still in teams, who start project
the first question before development stands which architecture to choose for the
application and why (HARUN, 2019). Lately, the most popular modern architectures
such as MVC, MVP, MVVM, VIPER, Clean Swift have captured the market and I
want to compare them and to make the future decision on architecture a little bit
more clear and grounded.

1.2 Problems

While choosing the application architecture, developers often face several challenges.
First of all, which technologies are being expected to use, how often they will modify
code due to numerous change requests, scale of the application, its design, etc.

Decisions on right architecture can solve all of these problems just because an
experienced developer can predict some risks and make the right choice.

More serious problem nowadays is the low competence level of new developers
compared to ones several years ago. This leads to bad quality code, a lot of useless
refactoring, plenty of problems because of wrong architecture choice.

1.3 Goals

The goal of this thesis work is to analyze, compare and conclude which architecture
will be a good choice for specific projects. As a result, given some conditions on the
project we will be able to assume which architecture will suit this application best
and why.

Chapter 1. Introduction 2

1.4 Background information

1.4.1 UIKit

Modern iOS development with Swift includes working with business and applica-
tion logic. To implement second one the UIKit standard library provides developers
with comprehensive interface and lots of UI/UX components to use (UIViewCon-
troller, UIView, UINavigationController, etc).

1.4.2 OOP and SOLID

Every single mobile application is developed based on object oriented programming
rules and following SOLID principles. Modern architectures help to develop appli-
cations and during this process developers can think less about possible OOP vio-
lations since these architectures and patterns were created exactly for avoiding such
violations.

3

Chapter 2

Model-View architectures

2.1 Model View Controller

When getting started into iOS development, the first common architecture that some-
one finds out is Model-View-Controller, also known as Apple’s MVC. This design
pattern is quite simple, since it divides all the objects in your application into the
three main types and determines the way they communicate with each other. These
are Model, View Controller and let’s look separately at each of them:

• Model - these objects are responsible for representing, processing and manip-
ulating all the data within the iOS application. The most popular model-type
objects are application data models that define the types, which are used inside
the application. In addition to them, model type can include objects which can
process, load, synchronize, save and perform other operations with the differ-
ent data throughout the application.

• View - objects that are used to show the UI of the application. These objects
know how to draw themselves and react to different events such as taps, han-
dles, swipes and other user interactions. Main view-type objects are views and
screens, which are visible to the user and they have the role of presenting data
and giving the possibility to somehow edit this data.

• Controller - the objects of controller type serve as a bridge between the model
and the view. As we will see further, since views cannot directly communicate
with models, the controller provides this connection, coordinates the applica-
tion flow and notifies view and model about changes, which should have any
impact on data or UI.

Talking about dependencies in MVC, everything is quite intuitive. Controllers
coordinate the application flows and provide communication between View and
Model.

The key feature of MVC architecture is simplicity. Mostly it serves good for few-
screens applications, pet projects, PoC’s, etc. These applications do not include any
complicated business logic and user flows, so all the obvious MVC’s disadvantages
are not so noticeable in the scope.

Why is MVC bad for enterprise applications, complex startup applications or
applications with lots of screens, flows and business logic? This architecture can-
not provide flexibility and reusability for big-scale projects and this will cause an
extreme mess in the development process. As a result, the most famous problem of
MVC will come to these projects - enormous Controllers, which violate OOP rules,
especially single responsibility from SOLID principles (Dobrean and Diosan, 2019).

Chapter 2. Model-View architectures 4

FIGURE 2.1: Model-View-Controller architecture.

2.2 Model View Presenter

Talking about MV-architectures I can’t forget the MVP which stands for Model-
View-Presenter. This architecture is quite similar to MVC, but has clear differences
and solves some obvious MVC problems. MVP is a more scalable and flexible archi-
tecture, therefore it is more usable in real projects, than Apple’s MVC.

The Model and View roles remain almost the same as in MVC with some changes,
but now we get a new type, called Presenter. This object simplifies the development
process and gives more possibilities to create complex user flows and GUI.

• Presenter - serves as a mediator between Model and View. At first sight it is the
same as Controller, but actually it executes only a part of a MVC controller’s
work. Presenter is responsible for presentation logic in general, converting
business data into readable UI format and vice versa. This object knows all
about what should be shown on the screen and when the application should
show specific information based on presentation conditions, implemented in
Presenter. Moreover, it is responsible for providing communication between
View and Model. Presenter handles user interactions received from View, can
validate and process the data and also it reacts to changes in Model and forces
the View to update accordingly.

As we can see, the Presenter is not the same object as the Controller. It is respon-
sible for more data processing and presentation logic, communicates with model
and view and handles the whole process of user interaction.

MVP is a little more complex than MVC and usually it uses more roles or lay-
ers to simplify the UIViewController or Presenter logic. For example, the common
practice is to separate some data loading logic into an isolated layer, called Service.
In this way, the code will be cleaner and development quality will be higher, since
we isolate layers with different responsibilities, so that we are confident that Model
knows nothing directly about user interaction on View and View doesn’t need to
know how the Model changes, because Presenter will handle both of these.

Model-View-Presenter can perfectly serve small and middle-scale applications,
such as growing startups or mass market applications with several functionalities.
Its moderate versatility makes it comfortable to scale such applications. Also, MVP

Chapter 2. Model-View architectures 5

FIGURE 2.2: Model-View-Presenter architecture.

is flexible enough to work in Agile projects. Because of its layer separations you can
without difficulties make changes into one of them and others won’t be affected.

Since the MVP remains the MV-architecture it possesses some drawbacks. First
of all, it is still not flexible enough for large enterprise applications with lots of
screens. Moreover, it is not very comfortable to use with applications, where you
want to implement some complex and custom UI components, since this can make
your presenter overloaded.

2.2.1 MVP vs MVC

MVP and MVC are quite similar, because they both are MV-architectures and here
are the same features of both architectures:

• If you don’t want to use any other layers for data loading, you can still make
the model responsible for this. All the fetching data from API, database or
wherever can be implemented within the model layer and the architecture will
still remain the correct MVP.

• Like all the MV-architectures, MVP suffers from unclear navigation. MVC and
MVP don’t provide us with proposed navigation layers, therefore this part is
usually up to the developer.

Despite the similarity, there are some explicit differences between them.

• One of the main key differences is that the UIViewController is now strictly
the part of the View layer. This solves the main MVC’s problem with enor-
mous Controllers, since now the Controller is spread to UIViewController and
Presenter, which make the architecture be more SOLID

Chapter 2. Model-View architectures 6

• View is not responsible for any work, except for presentation. Presenter is
responsible for handling all the user interaction

• View is not responsible for any work, except for presentation. Presenter is
responsible for handling all the user interaction

2.3 Model View ViewModel

The last architecture from the MV group is Model-View-ViewModel and this one
probably is the most popular architecture for new projects recently. MVVM is a bit
different from MVC and MVP with the way how the objects communicate with each
other inside the application. Model and View stand for the same as in MVC and
MVP, but in MVVM we have a new role called ViewModel (Luong Nguyen, 2017)).

FIGURE 2.3: Model-View-Presenter architecture.

• ViewModel - simple object, which converts data into format to represent on
View. VM is also responsible for controlling the state of View and handling in-
teraction. The main difference between MVVM and previous MV-architectures
is that the ViewModel communicates with View using data binding.

Data binding - is the way you can tie up several of your application objects to
represent one state on different application layers. In MVVM it means that you can
tie up your concrete View objects with corresponding data and whenever the data
changes, the UI also changes.

There are different ways of data binding in iOS development, which can be used
in MVVM:

• Closure binding - ViewModel when initialized in a View gets a closure, where
all the binded objects are updated according to the corresponding data from

Chapter 2. Model-View architectures 7

ViewModel. At the same time, this ViewModel has data fields with observers,
which triggers on data changes and the closure is being performed. As a result,
when the ViewModel gets any data updates from the Model layer, the closure
is triggered and binded View objects update their state.

• KVO binding - more complex iOS implementation of data binding which is
quite rarely used, since MVVM very often includes usage of FRP frameworks,
such as a Rx, in case of iOS - RxSwift and RxCocoa.

Key-value observing means that in a UIViewController you create observers
on ViewModel data fields and when the specific data is changed, a concrete
observer triggers and forces View to update a specific component.

• One of the most modern, popular and simplest ways to implement data bind-
ing is using the FRP framework, for example RxSwift and RxCocoa. The logic
of this kind of data binding is the same as KVO, since underneath it works us-
ing Swift’s key-value observing. However it is much more convenient to use
and provides modern interfaces to effectively create reactive chains, which can
perform not only data binding, but also do different operations with data, for
example, filtering, sorting, mapping, reducing, etc.

Considering the above, ViewModel is a powerful pattern, which makes mobile
developers use MVVM widely in their projects. ViewModel gives the opportunity to
hold the state of each View component separately as well as the entire View screen.
Data binding is an extremely convenient way to solve the problem of communication
between View and Model. In addition, it helps the developer in writing testable
code.

As for dependencies in MVVM, usually View holds the ViewModel and VM has
weak reference to View to update the UI on trigger. ViewModel holds the Model
and reacts on its changes, updating its own properties.

MVVM quite often is implemented without data binding and ViewModel is re-
sponsible for presentation logic and communication between View and Model. This
can be quite confusing, but such MVVM implementation is not correct, since the
actual pattern is MVP, but with a Presenter named as ViewModel. In modern iOS
development this is a common problem among people who can’t say the key dis-
tinctions between MVP and MVVM. However, as I’ve shown earlier, MVVM has a
completely different concept of Model and View communication, which makes it a
unique pattern.

Modern applications often include a lot of custom UI components and fancy an-
imations. MVVM implementation is perfect for such applications, because you al-
ways have control of the UI state from ViewModel and can implement animations
and different UI states quite easily in comparison to other architectures, which will
require much more work and attention to details.

MVVM is a good pattern in different stages of application development, but it
requires more skilled developers to work with. It also provides you with the op-
portunity to write very testable code and for big companies and big projects that
is a significant advantage. This architecture is convenient for small, middle-scale
applications and sometimes for large ones, which won’t change significantly. The
reason is that MVVM as all the MV architectures suffers from unclear navigation
implementations and its modules mostly are badly reusable for different purposes.
MVVM pattern gives a possibility to develop modern animatable GUI in the short
term and can also serve perfectly for fast-growing startups, which need catchy ap-
plications to attract investors and users.

Chapter 2. Model-View architectures 8

As well as other MV architectures, MVVM is not a very good choice for enor-
mous enterprise software, since it has only three layers and in large applications this
will result in a lot of messy unreadable and unsupportable code.

2.3.1 MVVM vs MVC

Even though MVC and MVVM are both MV architectures, they have some distinct
differences, which make them serve for various purposes.

• To start with, the way data is processed and shown in application is extremely
different. The MVC View layer does all the presenting work, whereas in MVVM
there is Model, which processes and prepares data and ViewModel, which is
responsible for data binding with the View layer. The MVVM approach is more
complex but at the same time more powerful, since it allows one to manage the
state of the View layer through the Model layer without direct connection be-
tween them. MVC architecture uses Controllers to establish communication
View and Model and suffers from a problem of extremely large UIViewCon-
trollers (Aljamea and Alkandari, 2018).

• MVVM is more comfortable to use when developing applications with lots
of customization, for example custom UI components or animations, because
all the View objects bind to ViewModel’s data properties and it is possible to
easily trigger such animations, change data while animating, etc. MVC, coun-
terwise, is less difficult in implementing small applications without specific
components and this gives you the opportunity to write less code and get to
the PoC or MVC (minimum viable product) faster.

As for similar features of both architectures:

• MVVM and MVC have one common problem of all MV architectures - navi-
gation. When starting a project and using one of any MV architectures there
is also a dilemma, which navigation implementation to choose for the applica-
tion.

• Both these patterns do not need implementation of lots of layers, so they can
be used for fast-pace application development or adding new features to ap-
plications in the shortest possible terms

2.3.2 MVVM vs MVP

As I said earlier, lots of iOS developers, who I worked with, quite often mistakenly
write their code with the ViewModel layer thinking they use the MVVM pattern. But
actually, the architecture they use is simple MVP, so let’s consider similar features
and find out why these patterns confuse developers.

• The concepts of ViewModel and Presenter are very similar with one distinc-
tion, which I will describe below. They both are responsible for providing
ready-to-present data to View, handling user interaction, supplying communi-
cation for View and the Model.

• MVP and MVVM also inherit all the MV architectures problems (navigation,
small amount of layers)

Chapter 2. Model-View architectures 9

Despite the similarities of MVVM and MVP, lots of experienced developers con-
tinue to prefer using the MVVM in their applications and MVP is a much rarer
choice.

• The key difference between MVVM and MVP is the difference in ViewModel
and Presenter implementations. Presenter does the data filtering, processing
and other operations itself, prepares data and passes it to View. Actually this
object does everything needed for presentation of UI components except for
rendering. In MVVM the data is being processed in the Model layer and View-
Model with its data binding serves as state manager for View components. The
dependencies in MVVM are more solid, since the ViewModel instantly reacts
to data changes and updates the View, whereas in MVP Presenter should react
on user interaction, process data and then tell the View layer to update the UI.

• Since MVVM uses a more complicated data flow approach it requires more de-
vice resources and precise coding, while MVP does not use any unusual ways
and developing new modules, modifying existing code is extremely straight-
forward.

2.4 Model-View architectures + Coordinator

Above I described and compared three most popular MV architectures and stated
that all of them have a common problem with navigation within the application.
Here I want to show the proposed navigation solution for these architectures, which
works well and fits perfectly to each of the discussed architectures.

Defining any of these architectures as MV architecture we will add one more
layer to the application called Coordinator. These objects can be on different appli-
cation levels, depending on project size, amount of user flows and feature modules.

2.4.1 What is Coordinator?

In iOS development for any MV architecture it is very important to define specific
navigation ways, because they do not manage application flows themselves. The
good solution here is to add a new object, that knows nothing about data or UI, but
knows all the possible application flows and navigation, for example which screen
should be shown after Log In screen, or which flow should start, when we tap the
specific button. Coordinator is the object we are looking for in this case.

Usually, UIViewController holds the Coordinator object and tells it to perform
necessary navigation based on the user interaction. With this approach we move
the navigation logic into a separate layer, which covers all application flows. There
are different modifications of using Coordinators, but mostly there is one root Ap-
pCoordinator for the entire application which manages child Coordinators. Those
child Coordinators at the same time can manage their own child coordinators, this is
needed, when your flows are extremely large and one coordinator would have too
many responsibilities. And lastly, the Coordinators define all the possible routings
within their flows to cover user flows.

Common example: AppCoordinator holds OnboardingCoordinator, which is re-
sponsible for navigation inside the Onboarding flow: Log In, Sign Up, Password
Recovery and other flows.

Chapter 2. Model-View architectures 10

FIGURE 2.4: Example of several Coordinators in the application.

2.5 Conclusion

Summing up all the Model-View architectures, I made this short overview of each
pattern to recall their distinctive features.

• Model-View-Controller - also known as Apple’s MVC. Three explicit layers
which have their responsibilities: Model - data operations, View - UI represen-
tation, Controller - mediator for Model and View.

Convenient architecture for different small applications, for example, pet projects,
startups or applications with simple core functionality. Using this pattern, de-
velopers often face the problem of large UIViewControllers, so that the code
becomes hard to read, modify, refactor and debug.

• Model-View-Presenter - improved modification of MVC, where View inside
can be separated into View and Controller and also has new layer Presenter,
which is responsible for communication between Model and View, preparing
data to show on UI and handle all the presentation logic within the screen.

More advanced architecture than MVC, since each layer has its own special
responsibility, but still this architecture is good for small and middle-scale ap-
plications due to bad reusability.

• Model-View-ViewModel - extremely interesting MV modification since most
implementations require FRP to provide data binding within View and View-
Model. VM - new layer, which binds data and handles all user interaction, but
no need to notify View about updates, since it can update reactively triggering
on ViewModel data changes.

Chapter 2. Model-View architectures 11

Convenient architecture for developing applications with extraordinary GUI
and animations. In addition to this, MVVM implementations are good for
testing in comparison to MVC and MVP. Can be used effectively to develop
projects and features of different sizes, but some challenges may appear, when
working on complicated flows.

All the MV architectures are quite compact, so each of them is perfectly main-
tainable in different development stages. Moreover, each of them is simple to un-
derstand and it helps in extending applications with new features.

Personally, for me, if developers are skilled enough and know how to use FRP,
MVVM is the best choice from these patterns to use while developing applications. It
provides the most testable code and efficient data management for creating projects
of different sizes and domains.

12

Chapter 3

More complex architectures

3.1 VIPER

After we have seen the Model-View architectures we can dive into more advanced
software patterns in the scope of iOS development. VIPER is an backronym for
View-Interactor-Presenter-Entity-Routing (Adibowo, 2020) and with some modifi-
cations often defined as VIPER Clean Architecture. What is this, we I will explain
in the next section and for now VIPER is a huge and massive architecture with pre-
cisely separated application layers where each layer has only one responsibility and
this helps to write clean, maintainable code, which is quite easy to test.

Avoiding the Clean Architecture paradigm for now, VIPER is extremely efficient
architecture, since its logical structure consists of distinct layers. With such features it
is easy to isolate dependencies and solve the problem of MV architecture, especially
MVC - Massive View Controller.

• View - renders UI and represents anything that is provided by the Presenter
object. This layer is passive and does any application work except for render-
ing views. This layer is very similar to View in MV architecture.

• Interactor - interesting layer, which contains all the business logic of the appli-
cation. These objects are responsible for manipulating data, performing differ-
ent operations on it and this entire work is done without notifying the UI. So,
the main task of Interactors is solving specific use cases using data models.

• Presenter - this layer is responsible for representation logic of UI. It communi-
cates with Interactor and View and after Interactor performs some data oper-
ations, Presenter is ready to make the data ready for presentation for the user.
Interesting fact, that Presenter usually does not work with Entities (Model ob-
jects). The object gets the data from Interactor in specific format and prepares
it for View.

• Entities - simply the model objects in the application. These objects are used
by Interactor to perform some business logic tasks and then in custom format
transferred to Presenter. As I said earlier, Presenter doesn’t know how to work
with Entity objects.

• Routing - the navigation layer of the application. Navigation tasks consist of 2
parts - user interaction (trigger) and actual transition. First part is handled by
Presenter, which processes all the user interaction and notifies that transition
should be done. New defined object called Wireframe handles the second part
of the navigation task. It usually possesses UINavigationController, UIWin-
dow or other iOS standard library objects that are necessary for performing
navigation.

Chapter 3. More complex architectures 13

FIGURE 3.1: VIPER architecture.

VIPER architecture gives you flexibility in the way you implement it in your
application. For example, you can use data binding between View and Presenter
layers to establish a UI presentation layer.

In comparison to MV architecture VIPER requires deep understanding of Clean
Architecture principles and why should developers separate different application-
level layers. If you know how to effectively use it, VIPER becomes an incredible tool
in the hands of experienced developers.

VIPER is a perfect architecture for large enterprise projects with big teams, since
it provides an ability to more effectively test the code then MV architectures, in-
dependently implement new features and work safely with different business and
application logic layers.

The main layers, which stand in architecture’s name, perform mostly core logic
of the project, but also VIPER includes external interfaces and services, which can
be changed during the application development. This external layer includes API
services, Workers, DB Managers and other objects, which have no impact on appli-
cation core logic and features.

Chapter 3. More complex architectures 14

3.2 Clean Architecture

Clean architecture is not a concrete pattern, it is an abstract paradigm and set of
rules on how to build effective architecture with isolated dependencies and sepa-
rate applications layers. In this section, we will look on clean architecture from the
perspective of Swift and modern iOS development trends.

Usually, Clean architecture is represented as a series of concentric rings and in
such abstraction the rules are following: inner layers do not do any application
specific-work, they do only pure computations and then using protocols commu-
nicate with outer rings (Martin, 2012).

FIGURE 3.2: Clean architecture.

For most iOS applications the Clean architecture layers include following levels
(their number may be different, it depends on customisation of clean architecture
within specific projects):

1. Entities or Enterprise logic - this layer includes all the internal and core appli-
cation data models, which are used inside the app. This layer knows nothing
about user interaction, navigation, API calls and so on. These objects define
core rules and models, for example in Swift these are structs and protocols. If
we consider VIPER as Clean architecture, Entity is the layer which perfectly
suits these rules.

2. Use cases or Business logic - this level of application layer separation includes
business logic of the application. It performs all the application-specific data
transformations, computations and manipulates the data models, which are
from Enterprise Logic layer. In VIPER the layer which is responsible for busi-
ness logic is Interactor.

Chapter 3. More complex architectures 15

3. Application logic - all the I/O, preparing data for presentation and similar op-
erations are done within this layer. Moreover, navigation tasks also belong to
this layer. So, the application logic layer holds View, Presenter and Wireframe
from VIPER, since these objects cover all the application logic.

4. The last layer is External interfaces layer - these are API services, DB Managers
and other tools, which are simple drivers for the previous three layers. They
provide the concrete data, but always can be replaced with another framework
or service, so ‘outer ring’ is the place for these objects.

Much more detailed review on Clean Architecture you can find in the famous
among software developers book by Robert C. Martin ‘Clean Code’.

As for me, understanding the concept of Clean architecture is essential for each
iOS developer, because with this knowledge a developer can build custom architec-
ture, which will perfectly suit his needs in specific applications.

Clean Architectures such as VIPER, Clean Swift or some custom architectures
which follow the above principles are the right choice for enterprise projects with
a number of features. Such applications often have very serious implementation
and separate different layers to the limit. Clean architecture on massive projects also
opens the door to create different teams with distinct responsibilities and to maintain
the development process avoiding common Model-View problems.

16

Chapter 4

Conclusion

In this work I tried to analyze and compare most popular architectures for iOS de-
velopment. Each architecture has its advantages and disadvantages and can nicely
suit to build specific projects.

Summing up, if you have to choose which architecture to use in your project,
firstly think of the size and scale of your application. If the application is for per-
sonal use or need to be done in short terms, MVC or MVP would be the best choice
here. Whereas if you plan to create fancy UI components and cool animation or want
to try working with a fast-growing and popular approach, then try MVVM. This ar-
chitecture gives a lot of possibilities to develop applications using new technologies
and trying to implement interesting solutions.

Last but not least, VIPER and Clean Architecture can perfectly fit into enterprise
projects or large applications with lots of functionality. Their versatility and respon-
sibility segregation can help you build your own custom architecture, which will be
clean, testable and perfectly suitable to your purpose.

4.1 Further works

There are lots of other architectures, which were not included in this work. I think
lots of them have a great potential, however some of them are not very popular and
others are quite specific to compare with Model-View or Clean architecture.

In the near future I plan to analyze such architectures like RIBs (developed by
Uber), Lotus (clean modification of MV), Redux (came to us from React Web Devel-
opment).

17

Bibliography

Adibowo, Sasmito (2020). How to Implement VIPER Clean Architecture in an iOS App.
URL: https://cutecoder.org/programming/how-implement-viper-clean-
architecture-ios/ (visited on 05/15/2021).

Aljamea, Mariam and Mohammad Alkandari (2018). “MMVMi: A validation model
for MVC and MVVM design patterns in iOS applications”. In: IAENG Int. J. Com-
put. Sci 45.3, pp. 377–389. (Visited on 05/14/2021).

Dobrean, Dragos and Laura Diosan (2019). “Model View Controller in iOS mobile
applications development.” In: SEKE, pp. 547–716.

HARUN, FIRDAUS BIN (2019). “REVIEW OF IOS ARCHITECTURAL PATTERN
FOR TESTABILITY, MODIFIABILITY, AND PERFORMANCE QUALITY”. In:
Journal of Theoretical and Applied Information Technology 97.15. (Visited on 05/13/2021).

Luong Nguyen, Khoi Nguyen (2017). “Application of Protocol-Oriented MVVM Ar-
chitecture in iOS Development”. In: (visited on 05/15/2021).

Martin, Robert C. (2012). The Clean Architecture. URL: https://blog.cleancoder.
com / uncle - bob / 2012 / 08 / 13 / the - clean - architecture . html (visited on
05/14/2021).

https://cutecoder.org/programming/how-implement-viper-clean-architecture-ios/
https://cutecoder.org/programming/how-implement-viper-clean-architecture-ios/
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Motivation
	Problems
	Goals
	Background information
	UIKit
	OOP and SOLID

	Model-View architectures
	Model View Controller
	Model View Presenter
	MVP vs MVC

	Model View ViewModel
	MVVM vs MVC
	MVVM vs MVP

	Model-View architectures + Coordinator
	What is Coordinator?

	Conclusion

	More complex architectures
	VIPER
	Clean Architecture

	Conclusion
	Further works

	Bibliography

