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Abstract

This thesis proposes and compares a few approaches for tackling the dynamic pric-
ing problem for e-commerce platforms. Dynamic pricing engines may help e-retailers
to increase their performance indicators and gain useful market insights. We worked
with the Amazon marketplace, using customer sales data along with additional data
from the Amazon services. Demand forecasting-based and RL-based pricing strate-
gies were considered. We gave a detailed explanation of each method, commenting
on its pros and cons. In order to train RL agents and compare them with baseline
methods, the simulator of the market environment was built. Conducted experi-
ments proved the effectiveness and advantages of RL-based methods over the clas-
sic approaches. We also propose the idea for future works on how RL-based pricing
could be further enhanced. The source code of our study is publicly available on
GitHub.
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Chapter 1

Introduction

Dynamic pricing is the task of finding an optimal pricing strategy. The company
integrates the dynamic pricing engines to increase different performance indicators,
such as income or revenue. A dynamic pricing engine considers many factors, such
as the company’s previous prices and sales, competitors’ prices, spend on advertis-
ing, seasonality, and other exogenous factors, to find the optimal strategy. Dynamic
pricing algorithms are used in many businesses such as retail, airlines, ride-hailing
companies, and rental companies to effectively respond to market fluctuations. For
instance, Uber pushes prices up in case of high demand caused by a particular time
range or bad weather.

The intuition behind the dynamic pricing is the following. At each timestep, the
demand curve could have different forms. This is because demand, except price,
also depends on exogenous factors that are changing in time. This means that at
different timesteps, it is beneficial for a company to set different prices. Dynamic
pricing engines are trying to "understand" the demand curve at the current timestep
and, optionally, how our pricing strategy affects demand curves in the future.

FIGURE 1.1: Static pricing vs Dynamic pricing. Image is taken from
[2].
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1.1 Dynamic pricing for e-commerce

In this work, we will consider dynamic pricing for e-commerce platforms. More
specifically, we will build and compare a few dynamic pricing engines for the Ama-
zon marketplace. The methods described in this work are general enough and could
be effectively applied to other domains. The reason for working with the Amazon
marketplace is the rapid development of e-commerce, the business value of dynamic
pricing for e-retailers, and the availability of sales data. Also, there are online ser-
vices, such as Keepa, that allow buying additional data from Amazon. This data
could significantly boost modeling. An enormous number of factors influence cur-
rent sales. Some factors are common to different marketplaces, such as seasonality,
competitors’ prices, or the company’s previous sales. On the Amazon marketplace,
there are additional factors such as sales-rank and spend on PPC advertising. Sales-
rank indicator shows how much the product is sold compared to other products
from the same category. The PPC advertising model lets sellers increase their sales
by investing money in the paid advertising. All those factors could be integrated
into a dynamic pricing engine in order to enhance its performance.

Nowadays, the e-commerce sector is one of the “big players” on the world mar-
ket. In 2019, e-commerce generated around $3.53 trillion in revenue. Moreover,
there are expectations that by 2040 around 95% of all purchases will be made online.
E-commerce offers convenience and personalization to its customers, which other
shopping methods cannot fulfill. Moreover, while the pandemic blockades the ma-
jority of industries, e-commerce only benefits from the quarantine measures and the
lack of physical interactions. We could see this from the following figures:

FIGURE 1.2: Pandemic influence on the e-commerce share. Image is
taken from [2].
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FIGURE 1.3: Pandemic influence on the Amazon revenue.

For e-retailers, it is crucial to monitor the prices and the market state. Overpric-
ing of products may result in the deterrence of the possible customers. On the other
hand, undercharging may limit the company’s income. For example, after imple-
menting dynamic pricing, Best Buy increased its sales by 25%. The main advantages
of dynamic pricing for e-commerce retailers are the following:

1. Stay ahead of competitors. Dynamic pricing automates the process of monitor-
ing competitors’ prices. This allows attracting new customers and increasing
customer loyalty.

2. Increase in profits. This is a priority task of dynamic pricing. As was stated
earlier, any other economic performance indicator may be used as an objective.

3. Gain market insights. Interpretability of ML and DS solutions is a hot topic
nowadays. Model interpretability may be a crucial factor before deploying it
to the production-ready system. Interpreting and understanding outputs of
dynamic pricing engines enable companies to stay aware of current market
trends. Also, this allows the company to understand how its customers be-
have.

1.2 Thesis structure

In Chapter 2, the technical background needed to understand implemented model-
ing steps is described. It comprehensively covers RL basics such as Markov Deci-
sion Process, Bellman optimality equation, Dynamic Programming methods, Monte
Carlo methods, and Temporal Difference learning. In Chapter 3, we describe related
works on the dynamic pricing topic, dividing dynamic pricing engines into two ma-
jor categories - demand forecasting based and RL based. In Chapter 4, the Amazon



Chapter 1. Introduction 4

data, which is used for modeling, is presented, and the process of building a de-
mand forecasting model is described. Also, we explain in more detail two types of
dynamic pricing strategies along with different RL methods, which we implement
and compare in the thesis. In Chapter 5, the experimental results of training RL
agents and comparing their performance with baseline methods (demand forecast-
ing based strategy and random strategy) are presented. Finally, in Chapter 6, we end
up with conclusions, commenting on the pros and cons of different methods.
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Chapter 2

Technical background

RL basics are written mainly based on “Reinforcement Learning: An introduction”
book [27].

2.1 Introduction to RL

RL is one of three main areas of ML, alongside supervised learning and unsuper-
vised learning. Its primary task is to develop algorithms that allow agents to maxi-
mize their cumulative rewards while acting in an unknown environment. RL algo-
rithms are concerned with learning what to do - how to map situations to actions.

The idea of learning by interaction with an unknown environment is very natural
and, in some way, is biologically inspired. As human beings, we continuously inter-
act with the world around us, acting in a way to maximize our reward, for example,
satisfaction, acknowledgment, or money. RL is an exceptional modeling framework
in the sense that it is trying to mimic human or animal decision-making algorithms.

RL significantly differs from other types of learning. Supervised learning is con-
cerned with building models based on a training set of input-output pairs. It is
vital that models could generalize to unseen data and have enough capacity to cap-
ture all regular dependencies between dependent and target variables. A problem
of supervised learning is to find a rule that maps elements from the input space
into output space elements based on a small subset of correct mappings. RL could
not be deduced to a supervised learning setting. The reason is the following: it is
impractical to get a subset of optimal behavior samples, which is both correct and
representative of all situations in which an agent could be. RL differs from unsuper-
vised learning in a way that it involves maximization objectives. Despite this, both
supervised learning and unsupervised learning algorithms could be used to boost
the performance of RL algorithms. Unsupervised learning could be used to discover
the hidden structure of state-space and end up with a more compact representation.
Supervised learning models could be used to approximate optimal action-values or
policy (see sections on DQN [9] and Policy Gradients [28]).

Exploration-exploitation tradeoff is a feature of RL that did not appear in other
ML areas. The dilemma is whether an agent should exploit behavior that turned out
to be good in the past or explore new actions that could possibly lead to even greater
rewards. Almost all RL algorithms should integrate this exploration mechanism and
balance between exploration and exploitation. Exploration is usually decreased with
time. In the beginning, the agent needs to explore more. In the case of nonstation-
arity, the exploration rate could not be reduced up to zero because the environment
continually changes its behavior.
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Because of its generality, RL can be used to tackle a great number of problems
from different domains. The only required thing is an environment (it should pos-
sess specific properties, see the section on MDP). That is way, RL is tightly coupled
with other engineering and scientific disciplines. Also, RL strongly interacts with
psychology and neuroscience [32]. Lots of RL algorithms were biologically inspired.
On the other hand, RL provides a model of animal learning that fits empirical data
pretty well. The link between these disciplines is due to the similarity of RL to what
humans and animals do.

RL is used successfully in trading [29] and finance [16] (dynamic pricing), NLP
(text generation [33], question answering [22], text summarization [11]), healthcare
(dynamic treatment regimes [18]), engineering (cluster resource management [19]),
robotics (robotics grasping [10]), gaming (AlphaGo [25]).

2.2 Markov Decision Process (MDP)

This section will define the fundamental notions of RL, such as environment, agent-
environment interaction, policy, returns, state-value function, and action-value func-
tion.

The environment is usually formalized with MDP. MDP is a discrete-time stochas-
tic control process. It provides a mathematical framework for modeling sequential
decision making, in which an agent’s actions may influence future outcomes. For
now, we will restrict ourselves to finite MDPs. It consists of a state-space S, action-
space A, reward-space R, and dynamics function p. Sets S, A, and R are all finite.
Function p describes the dynamics of the MDP.

p(s′, r, s, a) = P(St+1 = s′, Rt+1 = r|St = s, At = a) (2.1)

∑
s′∈S

∑
r∈R

p(s′, r, s, a) = 1

A significant restriction put on MDP is the so-called Markov property. It states
that the future is independent of the past, given the present. In terms of MDP,
Markov property means that given St and At, Rt+1 and St+1 are independent with Rk
and Sk for all k < t. Markov property is rather a restriction on states, which should
compress enough information about the past.

P(St+1 = s′, Rt+1 = r|St = st, At = at, St−1 = st−1, At−1 = at−1, ...) = P(St+1 =
s′, Rt+1 = r|St = ss, At = at)

More specifically, agent and MDP interact at each timestep t = 0, 1, 2, . . . . The
agent takes action a, based on the current state s. MDP receives a and responds with
reward r and next state s′. Together they produce the following sequence of elements

S0, A0, R1, S1, A1, R2, S2, A2, R3, ...

The overall process is visualized in the Figure 2.1.
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FIGURE 2.1: Agent-Environment interface. Image is taken from [2].

The learning objective is to maximize the cumulative reward the agent receives in
the long run while acting in an unknown MDP. It is also called a reward hypothesis.
To formalize this idea, the notion of return should be defined. The return is some
function of a sequence of rewards. In the case of episodic tasks (those that have a
finite number of interactions with an environment), it can be defined as

Gt = Rt+1 + Rt+1 + Rt+2 + ... + RT

In the case of continuing tasks (those that have an infinite number of interactions
with an environment), we should also consider convergence properties of the infinite
sums. That is why the following return is used,

Gt = Rt+1 + γ · Rt+1 + γ2 · Rt+2 + ... =
∞

∑
k=0

γkRt+k+1

where γ is a discount factor, which lies in a unit interval and controls how much
an agent is concerned with the future rewards. For example, if γ is equal to 0, return
at timestep t is equal to the immediate reward at the corresponding timestep. Then
in order to maximize the expected return from each state, the agent could use a
greedy strategy, maximizing the expected immediate reward. This could yield a
significant reduction of cumulative reward and thus is suboptimal in the long run.

The policy is a mapping from state-space to probabilities of selecting each possi-
ble action. Informally, the policy defines the strategy which agent uses for moving
on MDP. RL algorithms are trying to find the best policy out of the whole space of
possible policies.

π(s|a) = P(At = a|At = s) (2.2)

In order to define an optimal policy, the notion of state-value and action-value
functions should be defined. Those functions could be calculated for any policy, and,
roughly speaking, they show how good a policy is in different parts of a state-space.
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The state-value function is defined on a state-space and shows an expected return
an agent will receive in some state under a given policy. Similarly, the action-value
function is defined on a cartesian product of state-space and action-space. It shows
an expected return under a given policy in case of taking a specific action from a
given state.

vπ(s) = Eπ[Gt|St = s] (2.3)

qπ(s, a) = Eπ[Gt|St = s, At = a] (2.4)

A crucial equation in RL that linearly relates different state-values is the Bellman
equation. They significantly simplify finding state-values under a given policy ei-
ther with known or unknown dynamics function. First, we could relate successive
returns with the following formula

Gt = Rt+1 + γ · Rt+2 + γ2Rt+3 + ...
= Rt+1 + γ · (Rt+2 + γ · Rt+3 + ...)
= Rt+1 + γ · Gt+1

(2.5)

This equation could be used to derive the Bellman equation for v

vπ(s) = Eπ(Gt|St = s)
= Eπ[Rt+1 + γ · Gt+1|St = s]

= ∑
a

π(a|s)∑
s′,r

p(s′, r, s, a) · (r + γ · Eπ[Gt+1|St+1 = s′])

= ∑
a

π(a|s)∑
s′,r

p(s′, r, s, a) · (r + γ · vπ(s′))

(2.6)

If the model of the environment is known, then one could easily find a state-
value function by solving a system of linear equations. It has been proved that the
following system has a unique solution. If the model is unknown, lots of algorithms
that estimate state-values from the interaction with an environment exploit Bellman
equations.

An important result in RL, which is a basis for all action-value methods, is called
a Policy Improvement Theorem. Later we will show how it allows us to iteratively
improve our policies until we get an optimal one. It states that if we have two poli-
cies that satisfy the following set of inequalities

(∀s ∈ S)∑
a

π′(a|s) · qπ(s, a) ≥ vπ(s)

then one can show that

(∀S ∈ S)vπ′(s) ≥ vπ(s) (2.7)

In this case, we say that policy π′ is better than policy π. It is a very intuitive
definition since, in any state, it is at least as good to follow policy π′ than policy π.

In particular, if there are two deterministic policies, such that the first one is
greedy with respect to the action-value function of the second one then clearly the
greedy policy is better.
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qπ(s, π′(s)) ≥ vπ(s)

It can be shown that there exists at least one policy that is better than any other
policy. Its state-values and action-values should satisfy the following equations -
Bellman optimality equations for v and q (can be proved with Policy Improvement
Theorem):

v∗(s) = max
a

qπ∗(s, a)

= max
a

Eπ∗ [Gt|St = s, At = a]

= max
a

Eπ∗ [Rt+1 + γ · Gt+1|St = s, At = a]

= max
a

E[Rt+1 + γ · vπ∗(St+1)|St = s, At = a]

= max
a ∑

s′,a
p(s′, r, s, a) · (r + γ · v∗(s′))

(2.8)

q∗(s, a) = E[Rt+1 + γ ·max
a′

q∗(St+1, a)|St = s, At = a]

= ∑
s′,a

p(s′, r, s, a) · (r + γ ·max
a′

q∗(s′, a′)) (2.9)

We will call this policy an optimal policy. Moreover, any policy, which is greedy
with respect to optimal action-values is optimal. This fact is exploited by all action-
value methods, which aim to approximate optimal action values. Solve MDP means
finding an optimal policy. The easiest way to solve the MDP is to solve the Bellman
optimality equation.

2.3 Dynamic Programming (DP)

DP algorithms find optimal policy given MDP with known dynamics function. In
the real world, the assumption of known dynamics functions is usually violated.
Still, it is worth considering these algorithms because of their theoretical impor-
tance. All methods considered later will use the same general strategy for finding
optimal policy without assuming a perfect model of the environment. The idea is
straightforward and naturally arises from the Policy Improvement Theorem. Start
with any deterministic policy and continually update it to be greedy to estimated
action-values until convergence.

The first step required to implement this idea is to estimate the state-values of
a given policy. The simplest way to find state-values is to solve a system of linear
equations (Bellman equations, the existence, and uniqueness is guaranteed under
some technical assumptions). This approach is computationally expensive. One can
use the following update rule, which in the limit converges to the true solution.

vk+1(s) = Eπ[Rt+1 + γ · vk(St+1)|St = s]

= ∑
a

π(a|s)∑
s′,r

p(s′, r, s, a) · (r + γ · vk(s′)) (2.10)

It is an iterative method to solve a system of linear equations. This algorithm is
called policy evaluation. It terminates when state-value estimates change is small
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enough. It is controlled with a special threshold, which is a hyperparameter of the
algorithm. Having an efficient algorithm for estimating state-value function, we can
define a policy iteration algorithm [23]. It starts with any policy and alters between
two steps:

1. Estimate state-value function.

2. Change a policy so that it is greedy with respect to current action-values.

This process produces a sequence of policies and state-value functions

π0 −→ vπ0 −→ π1 −→ vπ1 −→ π2 −→ vπ2 −→ ... −→ π∗ −→ v∗

If the policy is no longer updated, then it is greedy with respect to its action-
values. It means that the Bellman optimality equation is satisfied, and thus optimal
policy is reached. Obviously, in policy iteration algorithms, we update our state-
value estimates only a finite number of times. This speeds up computations and still
possesses acceptable convergence properties.

In case we perform only one update during policy evaluation, we can explicitly
write an update formula for state-values. This result is known as Value Iteration
Algorithm [23].

vk+1(s) = max
a

E[Rt+1 + γ · vk(St+1)|St = s, At = a]

= max
a ∑

s′,r
p(s′, r, s, a) · (r + γ · vk(s′))

(2.11)

Another way of looking at this update formula is considering this update as an
iterative algorithm for solving the Bellman optimality equation.

GPI is the general idea of letting the policy-evaluation and policy-improvement
processes interact, independent of the granularity. Almost all RL algorithms are
GPI-style. Even if we know the perfect model of the environment, it is usually im-
practical to find exact state-values. If state-values are estimated from experience
(see the section on MC and TD methods), the true values are approached only in the
limit.

2.4 Monte-Carlo methods (MC)

MC methods are used for estimating value functions and discovering optimal poli-
cies. These methods do not require a perfect model of the environment, rather ex-
perience - samples of state-action-reward sequences generated from the interaction
with an environment. The idea is the following since state-values and action-values
are expectations of some random variable (return function), they could be approx-
imated with an average over realizations of this random variable. To ensure that
well-defined returns are available, we will consider episodic tasks. MC methods
have no natural extension to continuing tasks.

vπ(s) = Eπ[Gt|St = s] ≈ 1
n

n

∑
i=1

Gti (2.12)

First, we will focus on the estimation of state-value function. Suppose we are
given episodes while following some fixed policy. To estimate a state’s value, we



Chapter 2. Technical background 11

should find the entrance of this state and calculate respective returns. There are two
standard options for doing this:

1. Use only those returns that correspond to the first entrance of a state in the
episode - first-visit MC.

2. Use all entrances of a state in each episode - every-visit MC.

They have quite different theoretical properties, though both converge to true
values as the number of entrances approaches infinity. Usually, first-visit MC is
used.

Since dynamics function p is unknown, state-values are not enough to perform
policy improvement steps. We should change a policy so that it is greedy to cur-
rent action-value estimates. We could use the same first-visit MC or every-visit MC
methods for estimation of action-value function. The problem is that after the policy
improvement step, we’ll get a deterministic policy. This means that we couldn’t get
estimates for actions, which are not greedy since they won’t appear in any episode.
This is actually an exploration vs exploitation trade-off dilemma. To get estimates
and possibly discover better actions, we should explore, but exploitation of deter-
ministic policy is a better choice for short-term reward maximization. This problem
can be tackled by assuming exploring starts are available, using epsilon-soft policies
or using off-policy methods.

Exploring starts [17] is a feature of the environment that allows it to be set in any
state. With this feature, we could start our episodes for any state and action and
thus could estimate action-values for any state-action pair. This assumption is kind
of strong and usually is violated. Other approaches are more general and powerful.

Another option is to restrict a search space to a set of soft policies. To ensure that
each action-value will receive a reliable estimate in the long run, we need each action
to be taken with nonzero probability. Such a policy is called a soft policy. We can
actually change the policy improvement step so that it produces a soft policy. For
doing this, we will update our policy in a way that it uses a greedy action with prob-
ability 1 - ε and selects random action with probability ε. By Policy Improvement
Theorem, each subsequent policy will be better than a previous one. Obviously, the
sequence will not converge to the optimal policy, but it can be shown that the result-
ing policy will be the best out of all ε-soft policies.

The last option is using off-policy learning. It is dominated among action-value
methods. The idea of off-policy learning is to use two policies, one that is learned
about and becomes optimal in the limit, and another, more exploratory, used to gen-
erate experience. The policy learned about is called target policy, and policy used
to generate experience - behavior. Most off-policy methods use the idea of Impor-
tance Sampling, which is the general technique for estimating the expected value of
one distribution, given samples from another one. Let π and b be target and behav-
ior policies, respectively. Then importance-sampling ratio is given by the following
formula

ρt:T−1 =
∏T−1

k=t π(Ak, Sk) · p(Sk+1|Sk, Ak)

∏T−1
k=t b(Ak, Sk) · p(Sk+1|Sk, Ak)

=
T−1

∏
k=t

π(Ak|Sk)

b(Ak|Sk)
(2.13)

An important note here is that the importance-sampling ratio does not depend
on the dynamics function, which is unknown. Then the state-value function of target
policy can be calculated with the following formula

vπ(s) = Eb[ρt:T−1Gt|St = s] (2.14)
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Now, given trajectory samples from behavior policy b, it’s quite straightforward
to estimate state-values for target policy.

v̂π(s) =
1
n

n

∑
i=1

ρt:T−1Gt (2.15)

This estimator is unbiased, but its variance is possibly unbounded. It turns out
that there is another way to construct an estimator, which is asymptotically unbi-
ased and possesses much smaller variance. This approach is known as Weighted
Importance Sampling [20].

v̂π(s) =
∑n

i=1 ρt:T−1Gt

∑n
i=1 ρt:T−1

(2.16)

2.5 Temporal-Difference learning (TD)

TD [26] is one of the central ideas of RL, which is a combination of MC and DP
methods. It does not require a model of the environment and can be learned directly
from raw experience. MC methods need the whole trajectory to update the estimate
of state-value. This makes them hard for tackling continuing tasks. On the other
hand, TD methods update estimates based on current reward and next-state state-
value estimate - they bootstrap.

V(St)← V(St) + α · (Rt+1 + γ ·V(St+1)−V(St)) (2.17)

This TD method is called TD(0) and is particularly useful for online learning.
As discussed earlier, the advantage of TD over MC is that it is more suitable for
continuing tasks. Even if a task is episodic, if the episode length is very long, it’s
often impractical to use MC methods. Also, TD methods tend to converge faster
than MC methods.

A simple GPI-style method, which uses TD(0) for action-values estimation, is
called Sarsa. It solves the problem of exploration by using ε-soft policies and thus is
suboptimal.
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Chapter 3

Related Works

The first approach for building dynamic pricing engines was rule-based pricing. Its
main idea is to carefully design a set of "if-then" rules to dynamically adjust prices
according to different market conditions. Despite its simplicity, it is the most popular
and widely used pricing strategy. Competition-based pricing is an example of rule-
based pricing. This type of system decides what prices to set based on competitors’
prices. It may be implemented in the following way - always set the price to be ten
percent lower than the direct competitor’s price. After implementing competition-
based pricing [5] increases revenue by eleven percent. [4] defines a variance-based
pricing rule which guarantees an increase in profit upon fixed per-unit pricing strat-
egy. Another type of rule-based pricing is value-based pricing and cost-based pric-
ing [6]. Despite its simplicity, this paradigm of dynamic pricing possesses a set of
drawbacks that make it limited and unscalable. The first drawback is due to the com-
plexity of markets. There are a lot of factors that influence the demand at a specific
timestep. These factors may be, company’s previous prices, changes in competitors’
prices, the time range, advertising spend, inventory level, and other exogenous fac-
tors. Having all those input features, manual creation of rule-based formulas for
"if-then" logic is an extremely time-consuming process. Those rules should be prop-
erly checked, which also requires time and resources. The situation becomes even
worse if we consider a few hundred products or services which should be integrated
into a dynamic pricing engine. Another drawback of this approach is that it couldn’t
benefit from new data. The market environment is not stationary in the sense that
its properties may change with time. That is why it may be extremely beneficial to
integrate new data into the dynamic pricing engine.

Instead of manually defining formulas and rules for "if-then" logic, one could ex-
ploit the ML machinery to define a pricing strategy. By using ML models, dynamic
pricing engines could handle much more factors, which leads to significantly bet-
ter performance. Also, ML models could be automatically re-trained or fine-tuned
on newly available data without any interventions to the system. While dynamic
pricing using ML has many advantages, it also requires sales data as input from the
company. Sales data contains prices along with respective sales and, possibly, other
features that could be useful in forecasting sales (like inventory, product seasonality,
or sales rank). The common way to define a pricing strategy is to build a demand
forecasting model and choose a price that leads to the highest income. For exam-
ple, [3] uses fuzzy rule-based demand forecasting, [15] uses arrival rate estimation
to enhance demand forecasting for a real-time dynamic pricing system.

RL methods could be used to solve the problem of greedy decision-making. It
considers associativity between the successive pricing stages, thus being non-greedy
with respect to current timestep income but greedy with respect to cumulative in-
come. For example, [24] uses RL to tackle a dynamic pricing problem in an electronic
retail market. They consider both a single seller and two seller market. [16] presents
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an end-to-end RL approach to solve a dynamic pricing problem in e-commerce.
They were working with Alibaba marketplace.
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Chapter 4

Methodology

4.1 Demand forecasting

The first step in building either demand forecasting based or RL based dynamic pric-
ing engines is to “understand” how the current price affects the sales. This can be
achieved by building a demand forecasting model. The model takes as an input a
price along with other independent variables and outputs expected sales under such
an input. The type of demand forecasting model strongly depends on the dataset
and the relationship between dependent and independent variables. As was men-
tioned earlier, sales data from the Amazon marketplace are used in the experiments.
It contains multiple time series. After the data understanding and data preparation
steps, we end up with three different daily time series. The first one is a sales time
series, which is a target we want to forecast. Inventory and advertising spend are
the other two time series. These are exogenous factors, which could be integrated
into a forecasting model in order to improve its performance.

Prices time series data was taken from Keepa service. This service allows getting
information about a specific product or the whole category of products. For example,
it allows getting prices and sales-ranks data for a product by its ASIN. Sales-rank in-
dicator allows comparing different products in terms of how much they are bought.
Amazon changes this indicator every hour. Sales-rank may be used as an input to a
demand forecasting model too. Keepa also allows getting best-sellers for a specific
category. This is a list of ASINs sorted based on the sales-rank indicator.

4.1.1 EDA

In order to capture the proper dependence between price and sales variables, there
should be enough variability in the prices. It means that different prices must be
present in the dataset, and there should be high enough occurrences of each of them.
As seen from the Figure 4.1, prices of a target product are changed rarely and do not
possess enough variability. It means that interpolating price data to daily granularity
and using it for demand forecasting may be impractical.
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FIGURE 4.1: Target product prices.

To overcome this issue and enrich the price data, competitor’s data could be
used. To get a competitor list, one could use products that are close enough to the
target product in the best-sellers list. As was mentioned earlier, the best-sellers list
for a specific category could be taken from a Keepa service. Our target product sig-
nificantly differs from typical products in its category. That is why, in order to find
competitors, we manually filter all products from the best-sellers list and choose
similar products. Having a target product and competitors list, one could exam-
ine how price affects a sales-rank. Both of these indicators are taken from Keepa.
Learning this dependence is a simpler task than learning price-sales dependence be-
cause prices of different products are used. This increases the variability of prices
and leads to better generalization properties. Knowing how to estimate sales-rank
given a price, sales-rank, without a price, could be used as an input to the demand
forecasting model. After matching the sales timesteps with sales-rank timesteps, we
end up with four time series. A regression model that estimates the sales-rank given
price is introduced later in this section.
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FIGURE 4.2: Sales time series along with exogenous factors.

As we can see from the Figure 4.2, there is no clear trend in the sales. Sales in-
crease, which started in October 2017 and ended in July 2019, could be explained
as an increase of inventory and decrease of sales-rank at the respective time range.
Also, there is no clear seasonal component seen in the chart. Despite this fact, Google
Trends of the target product name shows the seasonality with a one-year period. To
verify the hypothesis of one-year seasonality, an auto-correlation function is ana-
lyzed. ACF shows the correlation of the signal with the shifted version of itself.
As seen from the chart, there is no local maximum around 365 lag. So, we could
conclude that there is no seasonal component in the sales data.

(A) Sales ACF (B) Google Trends

FIGURE 4.3: Seasonality hypothesis verification.

In order to evaluate the dependence of sales and other exogenous factors, Pear-
son correlation and mutual information scores were used. Pearson correlation mea-
sures the level of linear dependence between two random variables. It takes values
from -1 to 1. This score could be estimated from samples using the following formula
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rxy =
∑n

i=1(xi − x̄) · (yi − (̄y))√
∑n

i=1(x− x̄)2 ·
√

∑n
i=1(y− ȳ)2

Mutual information score measures the level of nonlinear dependence between
two random variables. It takes zero value if and only if two random variables are
independent. Higher values correspond to stronger dependence. For continuous
random variables, it is calculated as

I(X, Y) =
∫

X

∫
Y

p(X,Y)(x, y) · log(
p(X,Y)(x, y)
pX(x)pY(y)

)dydx

Estimating mutual information from samples is more complicated than in the
Pearson correlation case. It is based on nonparametric methods which use entropy
estimation [13]. As seen from the Figure 4.4, there is a dependence between sales
and exogenous factors. Advertising spend and inventory are positively correlated
with sales, and sales-rank is negatively correlated. All those results yield a clear,
intuitive sense.

FIGURE 4.4: Dependence of sales and exogenous factors.

Not only current timestep factors may influence sales, but also values from pre-
vious timesteps. To define an upper bound on the lags number, random forest fea-
ture importance scores and partial autocorrelation function are used. Random forest
regressor assigns feature importances based on the mean-squared-error reduction.
PACF originally works with a single time series but could be generalized to handle
two time series. Roughly speaking, PACF at i’s lag shows how “useful” this lag is
in case all previous lags are used. To do this, it firstly fits a linear regression model
using first i − 1 lags as features. Then PACF at i’s lag is a Pearson correlation be-
tween this lag and residuals. Based on obtained results (see Figures 4.5 and 4.6), we
decided to use inventory and advertising spend only at zero lag. The upper bound
for the number of sales lags is three and for sales-rank lags is fifteen.
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FIGURE 4.5: Random Forest feature importances.

FIGURE 4.6: PACF of sales and exogenous factors.

4.1.2 Models training and validation

Since we use exogenous factors to forecast sales and there are no trend and sea-
sonal components, the usage of ARMA, ARIMA, or SARIMA models is impractical.
That is why the ML approach is used to forecast sales. We have tried different ML
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estimators, validating different numbers of lags for each time series and different
hyperparameters for each ML model.

The standard in ML, K-fold cross-validation is not applicable to time series data.
The reason is that one has to preserve the sequential order in the samples. The fore-
casting model should be trained on the continuous part of the data. The straight-
forward modifications to the K-fold could be done so that it could properly work
with time series data. The basic idea is to define different, mutually exclusive test
sets, which are continuous in time. For each test set, a training set is created. The
training set is formed by grouping all samples which occurred earlier in time than
test-set samples. Finally, different copies of the same model are trained on different
training sets, evaluated on respective test sets, and the average metric over all test
sets is returned. This validation technique is also called a Walk-Forward validation.
The overall process is visualized in the Figure 4.7.

FIGURE 4.7: Time series models validation. The image was taken
from [30].

The sales time series has 1058 timesteps. The last 90 timesteps were used for the
test set. The test set is used to get an unbiased performance score. Other values were
used for models training and validation. We used three folds with 90 samples per
fold. The target performance score, which was used to choose the best hyperparam-
eters for each model and the best overall model, is WMAPE. A standard MAPE score
is inapplicable because it contains a division by the number of current sales, which
can be zero. WMAPE is calculated with the following formula

WMAPE =
∑n

t=1 |At − Ft|
∑n

t=1 |At|
Additionally, we calculate the RMSE score. RMSE score has the following for-

mula

RMSE =

√
∑n

t=1(Ft − At)2

n
In our experiments, we tried different regression models, such as linear regres-

sion, ridge regression, Poisson regression (part of GLM which assumes a dependent
variable has Poisson distribution and uses logarithmic link function), support vector
machines, random forest, and gradient boosting. For each model, different numbers
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Model name WMAPE RMSE Sales max lag Sales-rank max lag
Linear regression 0.165 31.5 2 5
Ridge regression 0.165 31.5 2 5

Poisson regression 0.197 37.3 3 5
Support Vector machines 0.15 29.7 2 4

Random Forest 0.142 28.2 2 8
Gradient boosting 0.143 28.4 2 8

TABLE 4.1: Validation results of demand forecasting models.

Hyperparameter max_depth max_features min_samples_split n_estimators
Value 5 0.6 6 200

TABLE 4.2: Random forest hyperparameters.

of lags and different model-specific hyperparameters were used. Validation results
are presented in the table 4.1.

As we can see from the Table 4.1, the random forest model has the lowest WMAPE
and RMSE scores. This model is used for demand forecasting as the best candidate.
Optimal parameters can be seen in the Table 4.2. Hyperparameter “max_features”
controls the number of features that are used to build each separate decision tree. In
our case, the previous sales are highly correlated with current sales. It can be seen
from the PACF chart in the EDA section. If all decision trees use this feature, they
will have similar splits and, thus, their predictions will be correlated. This could
lead to overfitting. As we can see, random forest “figures out” that it is beneficial to
use only 60% of features for each decision tree.

WMAPE on the test set is equal to 0.16, RMSE equals 26.6. WMAPE slightly
increases on the test set, but RMSE becomes even smaller. This means that the ran-
dom forest did not overfit the training set and possesses acceptable generalization
properties. Predictions on the test set can be seen in the Figure 4.8. Finally, the ran-
dom forest is re-trained on the whole dataset using optimal hyperparameters and
the number of lags.
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FIGURE 4.8: Predictions on the test set.

4.1.3 Sales-rank prediction

As was mentioned earlier, sales-rank, instead of price, is used as an input feature to
the demand forecasting model. In order to understand how prices affect sales, one
has to build a predictive model that inputs a price and outputs the expected sales-
rank. Price-rank pairs are generated from both the target product and competitors’
products. After discretization of prices and averaging sales-ranks for each possible
price, we end up with the following set of points.

FIGURE 4.9: Price-Rank dependence.

These points can be fitted with the polynomial functions. Polynomial parameters
are estimated using the ordinary least squares method. Using different polynomial
degrees yields the following curves
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FIGURE 4.10: Different polynomials fit.

A six-degree polynomial is used as the final model. It adequately approximates
the data and does not decrease too much at the end of the interval.

4.2 Demand forecasting based pricing strategy

By integrating dynamic pricing engines, companies are following their financial
goals. For simplicity, we assume that the economic performance indicator, which
the company is willing to maximize, is the revenue. Having a demand forecasting
model, the company could estimate how different prices affect the revenue at the
current timestep. For example, if one possesses all input features to the forecasting
model except the current price, different prices could be plugged in, and respec-
tive revenues (or any other performance metric) could be calculated. Finally, the
price that leads to the highest revenue is chosen. In our case, if possessing previous
sales, previous sales-ranks, current inventory level, and current advertising spend,
one could pick up different prices, estimate sales-rank using a sales-rank prediction
model, and feed all those input features to the demand forecasting model. Having
estimated sales number, respective revenues could be calculated. This pricing strat-
egy is also called a greedy strategy, and the respective price is called greedy because
it maximizes the revenue at the current timestep and does not account for future
timesteps.

The problem of finding a greedy price can be formulated as a one-variable op-
timization problem over a continuous interval. Interval bounds are defined by a
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minimum and maximum price. Since a demand forecasting model could be non-
parametric and use non-differentiable operations, gradient-based optimization tech-
niques, such as gradient ascent, Newton method, or trust region optimization, are
not applicable. In our case, a random forest regressor is used to forecast sales. This
model is non-parametric, and its output couldn’t be differentiated with respect to its
input. That’s why a typical solution is to discretize a continuous interval of possible
prices. Then for each discretized value, sales and revenue estimates are calculated.
The price which maximizes the revenue is used. An additional advantage of this
method is that it couldn’t stack in a local minimum.

The drawback of this approach is that it is greedy. In other words, it considers
only revenue in a current timestamp rather than cumulative revenue over a more ex-
tended period of time, which is a better choice for maximization. Current prices may
influence future market conditions, which may be significantly better for a company.
To illustrate this problem, let’s consider the Figure 4.11. The agent needs to perform
two consecutive actions. By acting greedy with respect to immediate reward, the
agent cumulatively earns 18 units. On the other hand, by acting non-greedy at the
first timestep, the agent is able to earn 103 units in total. This problem could be
tackled by using RL based pricing strategy.

FIGURE 4.11: Greedy vs Optimal strategies.

4.3 RL based pricing strategy

RL methods are the alternative approach that solves the problem of greedy decision-
making. These methods consider associativity between the successive pricing stages,
thus acting non-greedy with respect to current timestamp revenue but greedy with
respect to cumulative revenue. For example, it may be useful to put a lower price in
the current timestamp, decreasing the immediate revenue but attracting more cus-
tomers. This may lead to a significantly better market state in the future. Dynamic
pricing engines select optimal prices based on market conditions. In terms of MDP,
actions are prices, and states are market conditions, except for the current price of
the product or service.
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Usually, it is incredibly problematic to train RL agents from the interaction with
a real market. The agent must get lots of samples from an environment in order to
approximate the optimal policy. This may be a very time-consuming process. An-
other problem is an exploration-exploitation trade-off. While learning an optimal
policy, an agent must visit a representable subset of the whole state space, explor-
ing different actions. Consequently, an agent will definitely act sub-optimally while
training and could lose lots of money for a company. Basically, time and money lim-
itations do not allow RL agents to be fully trained in the real market environment.
That is why the agents are usually pre-trained on a simulated market environment
and further fine-tuned while interacting with the real market.

In order to simulate the environment, the state-space and action-space should be
defined. After that, the reward signal should be modeled as a stochastic function
defined on the cartesian product of state and action spaces. Finally, the transition
between states should be modeled in the simulator. Using a demand forecasting
model, the expected reward (for example, revenue) can be estimated. As a conse-
quence, input features for the demand forecasting model should be a part of the
state representation. Modeling transition between states strongly depends on the
task, but it tends to make a few modeling assumptions to be solved. Because of the
complexity of the market, it is extremely hard to simulate it accurately. This is the
main drawback of RL methods. In the next subsection, there is an explanation of the
market simulator.

4.4 Market simulation

The state representation, along with the process of reward calculation and next state
transitioning, are described in this section. As was mentioned earlier, the expected
reward could be estimated using a demand forecasting model. The problem is that,
among input features for a demand forecasting model, there are exogenous factors,
which change in time. These changes may depend on other factors which should be
separately modeled and integrated into the simulator. Roughly speaking, the state
contains two separate sets of features. The first set consists of all input features for
the demand forecasting model, except the current sales-rank. The second set consists
of features that are used to change exogenous factors from the first set. The actions
are all possible prices.

4.4.1 Reward signal

An immediate reward at each timestep is a performance metric, which the company
is willing to maximize. In our case, we assume that it is revenue. An environment,
having an action, could estimate the sales-rank. Then by combining the sales-rank
with part of the state that corresponds to demand forecasting, the expected sales
number could be estimated using a demand forecasting model. The estimated sales-
rank goes to the next state representation as the previous sales-rank, and all other
sales-ranks are shifted by one, ignoring the earliest sales-rank.

Demand forecasting model outputs expected sales. Obviously, the number of
sales is influenced by an enormous amount of factors, which we don’t account for.
That is why in practice, we could receive different sales even though the values of
considered features are the same. To handle this problem, the errors of the demand
forecasting model on the test set are examined. The idea is to fit those errors with
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parametric distribution, and each timestep sample an error term from this distri-
bution, adding it to the estimate of the expected sales. As seen from the chart, the
distribution of errors has a bell-shaped form and could be approximated with the
Gaussian distribution. In order to verify the hypothesis of normality, the Shapiro-
Wilk test is used. 1% significance level is used for all conducted tests in this thesis.
After calculating the p-value, the null hypothesis was not rejected, and the errors
were modeled with Gaussian distribution. After sampling the sales, revenue can
be calculated and returned to the agent. Sampled sales go to the next state repre-
sentation as the previous sales. As in the sales-rank case, the earliest sales are not
included in the next state.

FIGURE 4.12: (Left) Distribution of sales residuals. (Right) pdf of es-
timated Gaussian distribution.

4.4.2 Advertisement spend change

Since the current advertising spend is used as a feature to forecast the demand, it
should be somehow changed in the environment. It was decided to estimate the
next advertising spend based on previous advertising spends and previous sales. In
order to choose the number of lags, PACF is analyzed. As seen from the Figure 4.13,
the first lags have the highest PACF, and all other lags are small enough to ignore
them.

FIGURE 4.13: PACF of advertising spend with itself and with sales.

Advertising spend has a clear linear relationship with its first lag. It can be seen
in the Figure 4.14.
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FIGURE 4.14: Dependence of advertising spend with its first lag.

After fitting a linear regression model using lag-1 advertising spend as a single
independent variable, the correlation of lag-1 sales with residuals is calculated. As
seen from the Figure 4.15, after using lag-1 advertising spend, lag-1 sales have a very
small correlation with the residuals. It can be a sign of conditional independence of
current timestep advertising spend and previous timestep sales given previous ad-
vertising spend. That is why the final model for predicting the expected advertising
spend is a linear model that takes as an input only previous advertising spend.
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FIGURE 4.15: Dependence of sales and residuals.

Following the same arguments as in the sales forecasting case, the prediction
errors are fitted with a parametric distribution. After applying the Shapiro-Wilk
test, the null hypothesis of normality is rejected. That is why the Laplace distribu-
tion (also called a double exponential distribution) was used to model the residuals
data. The environment takes the current advertising spend and estimates the next
timestep advertising spend by applying a linear regression model and adding an
error term sampled from the Laplace distribution. Estimated advertising spend re-
places the current advertising spend in the next state.

FIGURE 4.16: (Left) Distribution of advertising spend residuals.
(Right) pdf of estimated Laplace distribution.

4.4.3 Inventory change

Inventory level indicator should not be forecasted. The company has well-defined
policies for producing and delivering its products. These processes can be simu-
lated in the environment. In our case, for the sake of simplicity, we assume that the
warehouse is supplied with new products at most one time per month. The logic,
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implemented in the environment, is the following. At each timestep, the environ-
ment looks whether the delivery was executed in the current month. Then if new
products were not supplied yet, it performs a supply with some probability p. Sup-
ply probability is chosen in a way that the mean number of supplies per month is
equal to the real value, which is estimated from the historical data. In order Markov
property is satisfied, two additional variables are added to the state representation.
These variables are day number and boolean variable, which shows whether supply
already was in the current month. This boolean variable is reset every new month.
The supply amount is sampled from an exponential distribution. Its parameters
were estimated from the historical data. The distribution of supply amounts and the
pdf of estimated exponential distribution can be seen in the Figure 4.17.

FIGURE 4.17: (Left) Distribution of supply amounts. (Right) pdf of
estimated exponential distribution.

4.5 Tabular Q-Learning

Q-learning is an off-policy TD control algorithm. It iteratively finds the optimal
action-values.

Q∗(s, a) = max
π

Eπ[Gt|St = s, At = a]

As stated earlier, the optimal policy can be easily reproduced from optimal action-
values. As was stated earlier, it would be any greedy policy with respect to optimal
action values. The following formula is used to update estimates

Q(St, At)← Q(St, At) + α · (Rt+1 + γ ·max
a

Q(St+1, a)−Q(St, At)) (4.1)

The estimates converge to the optimal action values, independent of the policy
used. Usually, the epsilon-greedy policy with respect to the current estimates is
used. This update formula can also be treated as an iterative way of solving Bellman
optimality equations.

This algorithm assumes a discrete state-space and discrete action-space. Accord-
ingly, before running this algorithm, one should discretize continuous variables into
bins. The discretization rate is a hyper-parameter of the algorithm and should be
tuned while training. The name “tabular” means that estimates of action-values are
stored in one huge table. Memory usage and training time grow exponentially with
the increase of features in the state representation, making it computationally in-
tractable for complex environments (for example, Atari games). In order to solve
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Algorithm 1 Tabular Q-Learning

1: Discretize continuous variables and initialize q-table Q(s, a).
2: Initialize the learning rate α.
3: for episode = 1, 2, . . . do
4: Obsereve the initial state S0.
5: for t = 1, 2, . . . , T do
6: Perform action At using ε-greedy policy.
7: Observe Rt+1 and St+1.
8: Q(St, At)← Q(St, At) + α · (Rt+1 + γ ·maxa Q(St+1, a)−Q(St, At))
9: end for

10: end for

this problem, function approximation [21] could be used to represent optimal ac-
tion values. This allows a more compact representation that does not depend on
state-space size.

Both Sarsa and Q-learning involve maximization in the construction of their tar-
get policies. A maximum over the estimated values is used implicitly as an estimate
of the maximum value, which can lead to a significant positive bias. This problem
is called a Maximization Bias. To tackle this problem, two separate estimates are
used. One of them is used for estimating greedy action, and another for estimating
its action-value. This idea is called Double Q-learning [7]. At each timestep, only
one random table is updated.

4.6 Deep Q-Network

DQN [9] algorithm is an action-values method. It is based on the Q-learning idea
of finding optimal action-values by using off-policy TD control methods. The main
difference to the tabular approach is that DQN uses a parameterized function to
approximate optimal action-values. More specifically, DQN uses ANNs as approx-
imators. Based on state representation, both CNNs and RNNs can be used. For ex-
ample, in case an agent learns to play video games, CNNs could be used to extract
features and predict optimal action-values from raw images. In case a few consecu-
tive frames are needed to represent a state, so that a Markov property is held, DQN
could use CNNs for feature extraction and RNNs (or any modification like LSTM [8]
or GRU [1]) to process image representations in a sequential manner and output an
estimate of optimal action-value.

As was mentioned earlier, the problem with the tabular approach is that its time
and memory complexity exponentially increases with the increase of state-space di-
mensions. In case we are using function approximation to represent optimal-action
values, we significantly reduce our memory consumptions. Now, one has to store
a single approximator in RAM. Its size may also depend on the number of state
representation dimensions, but it is not an exponential relation.

To obtain reliable estimates of optimal action-values for each state-action pair,
the agent needs to discover all state-space and action-space. If two states are simi-
lar in terms of state representation, tabular Q-learning should learn its action-values
independently without any information sharing. This is due to the fact that each
action-value is stored as a separate cell in a table. A benefit of using function ap-
proximation that allows reducing time complexity and reducing the number of in-
teractions with an environment is that it could learn the optimal action-value of a
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state without actually exploring this state. The reason is the following since we use
some parameterized function to obtain optimal action-value from a state-action pair,
in theory, an agent could explore a representable subset of state-space and generalize
to unseen states because of shared parameters. Also, it allows handling continuous
state-spaces out-of-the-box.

Before using ANNs as approximators, more simple models that allow stochastic
optimization were used. For example, [12] uses a linear model on top of coordinates
in a Fourier basis. RBF and polynomial basis functions were also used. In the case of
complex environments, these models don’t possess enough capacity to approximate
optimal action-values. For example, it is impractical to input raw images to these
types of models. To tackle this problem, one should create a more compact state
representation by doing feature engineering.

There are two possible options how to construct ANN architecture:

1. The first option is that ANN takes as an input a state and action and outputs
an estimated optimal action-value.

2. The second option is that ANN takes only a state as an input and outputs
estimated optimal action-values for each action.

The second approach assumes that there is the same number of actions for each
state. If this assumption holds, it is a preferable architecture since it allows esti-
mating a greedy action in a single forward pass. This could significantly speed up
learning. The first option is the basis for the DDPG [14] algorithm and could be used
in the case of continuous action-spaces.

FIGURE 4.18: ANN architectures.

What we did with Q-learning is to iteratively update action-value estimates with
the following formula (4.1). Basically, at each timestep t we make estimate of (St, At)
pair a little bit closer to the target yt.

yt = Rt+1 + max
a

Q(St+1, a) (4.2)

The problem with DQN and any other function approximation approach is that
we could change our estimates only by changing the parameters of the model. The
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straightforward solution is at each timestep to perform a stochastic gradient descent
step with respect to model parameters based on four-pair St, At, Rt+1, St+1. To do
this, we will define a loss function at iteration i

Li(θi) = Es,a∼p(.)[(yi −Q(s, a; θi))
2] (4.3)

where
yi = Es′∼ε[r + γ ·max

a′
(Q(s′, a′; θi−1))|s, a]

The distribution p is obtained by acting ε-greedy with respect to current action-
value estimates.

Then the gradient of the objective has the following form

∇θi L(θi) = Ea∼p(.);s,s′∼ε[(r + γ ·max
a′

Q(s′, a′; θi−1)−Q(s, a; θi))∇θi Q(s, a; θi)] (4.4)

A single-sample approximation is used. This leads to the usual Q-learning up-
date formula. This simple extension of the Q-learning algorithm possesses two
drawbacks which make it very hard to train ANN. These drawbacks are the fol-
lowing:

1. Using stochastic gradient descent assumes consecutive samples to be indepen-
dent and drawn from the same distribution. Obviously, this assumption is
violated.

2. ANN could perform worse on states that did not occur for a long time.

Both of these problems are solved by using an experience replay mechanism.
The idea is the following: at each timestep, save a four-pair (St, At, Rt+1, St+1) to the
buffer and sample from this buffer a batch of four-pair samples. These four-pair
samples are used for mini-batch gradient descent update of parameters. This algo-
rithm allows using a single sample multiple times and thus is more sample efficient.

Another possible problem is connected with autocorrelation. By changing the
parameters of the model, we change the targets yi for future timesteps. This could
harden the learning process. The solution is to have another network - target net-
work, which is used for calculating the target. After a predefined number of interac-
tions with an environment, parameters from our training network are copied to the
target network so that they are up to date.

Since DQN is a modification of Q-learning, it also has a problem of Maximiza-
tion Bias. In Q-learning, we tackled this problem by using two separate tables of
estimates. Since we integrate the target network into our algorithm, we should not
create another network to tackle the maximization bias problem. Now, we could es-
timate optimal action with target network and optimal action-value with prediction
network.

4.7 Policy Gradients

The policy gradients algorithm is based on an entirely different idea of learning an
optimal policy. Instead of estimating optimal action-values, policy gradients directly
parametrize and optimize a policy. ANNs could be used to parametrize a policy.

π(a|s, θ) = P(At+1 = a|St = s, θt = θ) (4.5)
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Algorithm 2 DQN

1: Discretize action-space if needed.
2: Initialize Q(s, a; θ) with random weights.
3: Initialize an experience replay buffer and learning rate α.
4: for episode = 1, 2, . . . do
5: Obsereve the initial state S0.
6: for t = 1, 2, . . . , T do
7: Perform action At using ε-greedy policy.
8: Observe Rt+1 and St+1.
9: Save four-pair (St, At, Rt+1, St+1) to experience replay.

10: Sample mini-batch from experience replay.
11: Calculate yt’s using formula (4.2).
12: Perform a gradient descent step on (yt −Q(St, At; θ))2

13: end for
14: end for

This could be beneficial because of a few reasons:

1. An optimal policy itself may be a simpler function than an optimal action-
values function.

2. Policy gradients could handle continuous action spaces without a need for dis-
cretization.

3. Policy gradients possess better convergence properties because of smooth pol-
icy updates (in action-value methods, a small estimate change may lead to a
significant change of policy).

The general idea is to parametrize a policy and define some objective we want
to maximize, which is a function of policy and thus its parameters. Basically, this
function shows how good an input policy is. This objective function is optimized
with stochastic gradient ascent until convergence. The gradients of the objective are
estimated while the interaction with an environment.

For simplicity of the derivations, we will restrict ourselves to episodic tasks.
Also, we will assume that each episode starts in some non-random state s0 (all re-
sults are valid if we relax this assumption). Then the objective function is defined as
follows:

J(θ) = vπθ
(s0) (4.6)

The problem is that a gradient of the objective depends on the dynamic function
p, which, in a general case, is unknown. Policy gradient methods exploit the result
of the policy gradient theorem, which allows rewriting the gradient of the objective
as an expected value, which could be approximated while acting in the unknown
environment. Policy gradient theorem states that

∇J(θ) = Eπ[∑
a

qπ(St, a)∇π(a|St, θ)] (4.7)

Then stochastic update of the parameters looks as follows:

θt+1 = θt + α ∑
a

q̂(St, a; w)∇π(a|St, θ) (4.8)
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This update requires having estimates of all action-values and uses all actions to
perform an update. This method is called the all-actions method.

Another option is to further simplify the form of the gradient so that we don’t re-
quire having action-value estimates. REINFORCE [31] algorithm uses the following
formula to estimate the gradient of the objective function:

∇J(θ) = Eπ[∑
a

π(a|St, θ)qπ(St, a)
∇π(a|St, θ)

π(a|St, θ)
]

= Eπ[qπ(St, At)
∇π(At|St, θ)

π(At|St, θ)
]

= Eπ[Gt
∇π(At|St, θ)

π(At|St, θ)
]

(4.9)

In this case update formula takes the following form

θt+1 = θt + αGt
∇π(At|St, θt)

π(At|St, θt)
(4.10)

REINFORCE algorithm could be used to solve episodic tasks. As in MC meth-
ods, this algorithm needs to run the whole episode to calculate a return. This fact
leads to high variance of an estimator and could significantly slow down the train-
ing process. To reduce the variance of the estimator, the baseline could be used. The
idea is to change the estimator so that it remains unbiased but possesses a smaller
variance. We could subtract baseline function b, which depends only on the state,
from return without affecting a mean value

∇J(θ) = Eπ[∑
a
(qπ(St, a)− b(St))∇π(a|St, θ)] (4.11)

The estimator remains unbiased since

∑
a

b(s)∇π(a|s, θ) = b(s)∇∑
a

π(a|s, θ) = b(s)∇1 = 0 (4.12)

Then update formula takes the following form

θt+1 = θt + α(Gt − b(St))
∇π(At|St, θt)

π(At|St, θt)
(4.13)

State-value estimates are usually used as a baseline. They are learned simultane-
ously with optimal policy. The overall algorithm looks as follows:

Algorithm 3 REINFORCE with Baseline

1: Initialize π(a|s, θ) and v̂(s, w) with random weights.
2: Initialize learning rates αθ and αw.
3: for episode = 1, 2, . . . do
4: Generate an episode S0, A0, R1, S1, A1, R2, S2, A2, R3, ..., RT using policy π.
5: for t = 1, 2, . . . , T − 1 do
6: Gt ← ∑T

k=t+1 γk−(t+1)Rk
7: w← w + αw(Gt − v̂(St, w))∇v̂(St, w)

8: θ ← θ + αθ(Gt − v̂(St, w))∇π(At|St,θ)
π(At|St,θ)

9: end for
10: end for
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To handle continuing tasks, Actor-Critic methods are used. Its main difference
to REINFORCE is that it bootstraps. Since Gt could not be calculated directly, Actor-
Critic methods approximate Gt as

Ĝt = Rt+1 + γ · v̂(St+1, w)

In this case update formula looks as follows

θt+1 = θt + α(Ĝt − v̂(St, w))
∇π(At|St, θt)

π(At|St, θt)

= θt + α(Rt+1 + γ · v̂(St+1, w)− v̂(St, w))
∇π(At|St, θt)

π(At|St, θt)

(4.14)
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Chapter 5

Experiments

The simulated market environment has a 14-dimensional state-space. The action-
space is a continuous interval of possible prices. The minimum and maximum ac-
tions are 2 and 49, respectively. These values are taken as a minimum and maximum
price over the whole list of competitors. It was decided to use an episodic scenario
for experiments. The length of the episode is 30, which corresponds to one month.
The starting states are uniformly sampled from the historical data. The reason for
using an episodic task is that the simulation becomes less accurate with time due to
autoregression. The environment calculates estimates based on previous estimates.
Another benefit of episodic setting is that it allows companies to directly control the
level of the greediness of their dynamic pricing engines.

We did not use any third-party libraries for training RL agents. The training code
was implemented on the solid PyTorch framework. The idea of implementation was
that the entire experiment is set up with a single config file. Config file encapsulates
all required information, such as hyperparameters of the method, training parame-
ters, and folder with logs. Training logs are saved into the TensorBoard. This allows
analyzing conducted experiments and choosing between different agents. The pro-
gram also monitors the average return over a predefined number of the last episodes.
Copy of the model, which maximizes this score, is saved to disk. The interface of
agents is unified across different methods. Because of this, the evaluation of differ-
ent agents could be done with a single code. Method name and path to the saved
model are the only things that should be specified in the evaluation config file.

5.1 Agents training

5.1.1 Tabular Q-Learning

The tabular Q-Learning method is of limited use because of memory restrictions. All
continuous features were discretized into four intervals. The q-table occupies 2GB.
In the case of using five intervals, the q-table occupies over 40 GB and could not be
fit into the RAM. Despite the small number of bins, the agents were able to improve
their performance, producing quite smooth learning curves. This could be seen from
the Figure 5.1.
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FIGURE 5.1: Learning curves of Tabular Q-Learning agents

5.1.2 DQN

Because of parameter sharing, DQN requires far fewer episodes to be trained. An-
other advantage is that it does not require discretization of input features. Different
numbers of hidden layers were tried. We stop on two hidden layers with 32 neurons
on each. Also, different numbers of bins for action-space discretization were tried.
We stop on 10 bins since higher numbers do not improve the performance. The
crucial hyperparameters, which allowed agents to start training, are the size of the
replay buffer and the number of timesteps between copying weights from training
to target networks. We end up with the size of replay buffer equal to 250 and copy
timesteps equal to 90. As seen from the Figure 5.2, the learning curves have quite
big fluctuations. It is due to the fact that a small change of parameters can lead to a
significant change of policy.

FIGURE 5.2: Learning curves of DQN agents
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Agent type Random Greedy Tabular DQN Policy Gradient
Mean return 74613.6 117489.2 135129.5 154276.6 149189.9

TABLE 5.1: Mean returns over 300 episodes

5.1.3 Policy Gradient

REINFORCE with baseline algorithm was used for experiments. State-value esti-
mates were used as a baseline function. Two separate fully-connected neural net-
works approximate the optimal policy and its state-values. They share a set of com-
mon hidden layers. Different numbers of common layers and different architecture
of both heads were tried. We stop on two common layers with 64 and 32 neurons.
Both a state-value head and a policy head have a single layer. As in the DQN, we
discretize action-space into 10 intervals. As seen from the Figure 5.3, policy gradient
agents produce the smoothest learning curves. It is due to the fact that, unlike in
DQN, a small change of parameters leads to a slightly changed policy. On the other
hand, policy gradients require more episodes to be trained.

FIGURE 5.3: Learning curves of Policy Gradients agents

5.2 Agents evaluation

In order to compare different agents, 300 simulations under the same random seed
were run for each type of agent. The following table shows the mean return each
agent receives. As seen from the Table 5.1, RL agents outperform both a random
agent and a greedy agent. Tabular Q-Learning agent has the worst performance out
of all RL methods. It also requires the most time and memory resources. DQN and
Policy Gradient agents have similar performance, making them a preferable choice
for this task and environment.

In the Figure 5.4, one can see how much each agent receives in each episode and
the overall distribution of returns of each agent.
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FIGURE 5.4: Performance comparison of different agents
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Chapter 6

Conclusions and Future work

Dynamic pricing methods allow different businesses to reach their financial goals.
Dynamic pricing methods could be implemented using ML machinery. It requires
historical data to be collected and used. For this work, we have implemented a few
dynamic pricing strategies for the Amazon marketplace. Customer data was used
together with additional data taken from the Keepa service. The first class of meth-
ods, which is based on demand forecasting, is called greedy. They maximize the
immediate revenue or other performance metrics. In our work, the random forest
regressor was used to forecast the demand. Its main drawback is that it considers
only current timestep revenue and could be nonoptimal in the long run. An alter-
native class of methods, which solve the problem of greedy decision-making, is the
RL-based methods. Since training in the real market is often impractical, the simula-
tor of the market environment was built. The problem is that it is tough to simulate
the market accurately. It is the main drawback of this approach. Based on con-
ducted experiments, we prove the effectiveness and advantages of RL methods over
the greedy methods. Future works on this topic may include learning the optimal
pricing strategy and simultaneously learning how much money should be spent on
advertising. In the case of Amazon, it could be the PPC advertising.
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