SPECTRA OF PT7T-SYMMETRIC OPERATORS UNDER
RANK-ONE PERTURBATIONS

MONIKA HOMA AND ROSTYSLAV HRYNIV

ABSTRACT. We study the spectra of PT-symmetric Hamiltoni-
ans H that are rank-one perturbations of a self-adjoint P7T-
symmetric Hamiltonian Hy. We show that the discrete spectrum
of H may include any number of complex-conjugate pairs of com-
plex numbers of arbitrary algebraic multiplicity

1. INTRODUCTION

In their seminal paper [7], C. Bender and S. Boettcher studied a

family of (generally non-Hermitian) Hamiltonians
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and showed that, when a > 2, they have only real eigenvalues. The au-
thors suggested that such a rather unusual phenomenon was due to the
fact that the non-real potential V' (z) := —(ixz)® possesses the so-called
PT-symmetry property, in the sense that PTV (z) = V(2)PT. Here P
and T are the space parity and time reversal operators respectively, de-
fined as (Pf)(x) = f(—x) and (T f)(xz) = f(z). That paper initiated a
new branch of quantum mechanics called P7T-symmetric quantum me-
chanics [8-10] that has found numerous experimental confirmations [5].
Soon afterwards, dozens of non-Hermitian P7T-symmetric Hamiltoni-
ans with real spectra were discovered, as well as many P7T-symmetric
Hamiltonians possessing non-real eigenvalues; see [5] for an extensive
review of the related physical bibliography and the book [6] for a wide
overview of the current state of the art of the field.

Much work has been done since then to find sufficient and/or neces-
sary conditions for reality of the spectrum of PT-symmetric Hamilto-
nians. In particular, reality of the spectrum was understood to depend
on the ezact, or unbroken PT-symmetry [11,17], for Hamiltonians with
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a hidden symmetry—i.e., a metric, or charge conjugation operator [4],
for quasi-Hermitian |21] or pseudo-Hermitian Hamiltonians [29-31] etc.

Some results were obtained by developing perturbation theory for
PT-symmetric Hamiltonians [12-15]. Assume that H, is a PT-
symmetric Hamiltonian with discrete spectrum, Hj is its relatively
bounded PT-symmetric perturbation, and H, := Hy + ¢H|. As the
discrete spectrum of every P7T-symmetric Hamiltonian is symmetric
with respect to the real line, every real simple eigenvalue must remains
simple and thus real for small . On the contrary, non-simple eigen-
values (i.e., eigenvalues of multiplicity larger than one) often split and
move into complex domain when ¢ departs from zero.

The purpose of this paper is to discuss spectra of Hy under PT-
symmetric additive perturbations that are “small” in a different sense,
namely, are of rank one. In the finite-dimensional setting, spectra of
matrices under rank-one perturbations were shown in [22| to change
quite arbitrarily; that result was also specified for structured (normal,
Hermitian and unitary) matrices. The approach of [22] is purely alge-
braic and is based on the perturbation analysis of the related deter-
minants; for that reason, it allows no direct generalization to infinite-
dimensional setting. Behaviour of the Jordan structure of a matrix
or operator under a generic rank-one or low-rank perturbations was
discussed in [16, 19, 34, 35|, while perturbation of structured matrices
(such as real, symmetric, symplectic, orthogonal in Euclidean or in-
definite inner product spaces) and matrix pencils have recently been
discussed in [2,3,18,23-28,33|. A detailed spectral analysis of rank-one
perturbations of self-adjoint Hamiltonians was made in [36].

In this paper, we prove that a rank-one P7T-symmetric perturbation
of a self-adjoint Hamiltonian can dramatically change its discrete spec-
trum. Namely, we shall demonstrate that, using such perturbations,
the discrete spectrum of any Hermitian P7-symmetric Hamiltonian
operator can be changed at will to contain any desired finite set of
complex conjugate pairs of bound states with any desired degeneracy.
More explicitly, we prove that, given an arbitrary self-adjoint and P7T -
symmetric Hamiltonian Hy with discrete spectrum, for any number n
of non-real complex-conjugate pairs z1,zy, 22,22,...,2n, 2n, and any
sequence of natural numbers my, mo, ..., m, there is a P7T-symmetric
rank-one perturbation H of Hj such that z; and Zj are eigenvalues of H
of (algebraic) multiplicity my, for every k = 1,2,... n. In addition, our
proof leads to an algorithm of constructing rank-one perturbations of
desired spectral effect. These facts demonstrate that reality of the
spectra of PT-symmetric Hamiltonians is a non-trivial phenomenon,

whose understanding requires deep mathematical analysis.
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The paper is organized as follows. In the next section, we dis-
cuss general properties of PT-symmetric Hamiltonians and their rank-
one perturbations. In Section 3, we give an example of a rank-one
PT-symmetric perturbation of the kinetic Hamiltonian having eigen-
values at the points 47 and then prove a more general statement
in Theorem 3.2 that any 2n eigenvalues of an arbitrary self-adjoint
PT-symmetric Hamiltonian Hy can be moved into arbitrary n com-
plex conjugate eigenvalue pairs by a P7T-symmetric rank-one per-
turbation. Then in Section 4, we demonstrate by example that a
rank-one P7T-symmetric perturbation can lead to degenerate non-real
eigenvalues and then prove in Theorem 4.2 that, for every self-adjoint
PT-symmetric Hamiltonian Hy and any 2n of its eigenvalues, a P7T-
symmetric rank-one perturbation H of H exists for which the selected
eigenvalues get transformed into an eigenvalue pair z and Zz of mul-
tiplicity n. We combine the above two effects into the most general
Theorem 5.1 in Section 5 and explain how it applies to the quantum
harmonic oscillator. Finally, Section 6 summarizes the results and dis-
cusses possible generalizations.

2. PRELIMINARIES

Assume that H is a separable Hilbert space with inner product (-, -)
(linear in the first component and anti-linear in the second one) and
Hy is a self-adjoint Hamiltonian in A with simple discrete spectrum.
Under this assumption, the operator Hy is necessarily unbounded, has
compact resolvent, and its spectrum o (Hy) consists of real simple eigen-
values that can be listed in increasing order as A\,, n € I, where ] = N
if Hy is bounded below and I = Z if it is bounded neither below nor
above. We denote by v,, n € I, the corresponding normalized eigen-
functions.

Next we introduce the abstract notions of the space parity operator
P and time reversal operator T in H; these are modelled by bounded
commuting operators in H with the following properties:

(a) P is a unitary involution, i.e., P? = I and, for all f and g in H,

(Pf,Pg) =(f,9);
(b) T is a conjugation operator, i.e., 72 = I and for all f and g¢
in H
(Tf,Tg) =g, /)
Clearly, the operators (Pf)(z) = f(—z) and (T f)(x) = f(z) in the
Hilbert space H = Ly(R) are just standard particular examples of such

symmetries. A mirror symmetry with respect to any hyperplane in R"
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through the origin is another example of the operator P in the Hilbert
space H = Lo(R").

Definition 2.1. A densely defined (unbounded) operator A is called
PT-symmetric if

PTAf = APTf
for all f in the domain of A.

We assume that the unperturbed Hamiltonian H, is P7T -symmetric.
This implies that Ho(PTv,) = PT (Hov,) = A\PT vy, so that PTo,
is an eigenfunction of H, corresponding to the eigenvalue )\, along
with v,. Since A, was assumed simple, we have PTwv, = c,v, for a
complex ¢, with |¢,| = 1. As observed in [9], by appropriate scaling
this constant can be absorbed into v,; then we have PTv, = v,, i.e.,
there is no spontaneous symmetry breaking in Hy.

Our aim is to study spectral properties of the PT-symmetric Hamil-
tonians H that are rank-one perturbations of Hy. We recall that a
linear operator A acting in the infinite-dimensional space H is of rank
one if the range ran A of A is one-dimensional. Taking an arbitrary non-
zero vector ¢ € ran A, we conclude that Af = c(f)y for every f € H,
with a bounded linear functional ¢(f); as a result, there is ¢ € H such
that Af = (f, o). Therefore, a generic rank-one perturbation H of
Hj is of the form

where ¢ and v are fixed non-zero functions in H, in the sense that

Hf =Hof +{f,¢)¢

for every f € dom(H) = dom(H,). Our primary objective is to under-
stand how much the spectrum of H, can change under such rank-one
perturbations.

We observe that the Hilbert space adjoint H* of the rank-one per-
turbation H (2.1) of Hy is given by

H* = HO+ <7¢>(p7

so that H is Hermitian (i.e., self-adjoint in the Hilbert space H) if
and only if the functions ¢ and v are collinear. P7T-symmetry of H
requires quite different properties of ¢ and v, as the following lemma
demonstrates.

Lemma 2.2. The rank-one perturbation (-, o) is PT -symmetric if
and only if there is a number ¢ € C with |c| = 1 such that PT ¢ = cp
and PTy = cy.
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Proof. PT-symmetry of the rank-one perturbation A = (-, )1 requires
that, for every f € H,

PT(Af) = (f,@)PTY = (PTf, )¢ = A(PTf).

Therefore, PT and v are collinear, i.e., PT 1 = ¢ for some complex
number ¢; as PT is an isometry, we see that |c| = 1. The above relation
now implies that (PT f, ) = c(p, f) for all f € H. Using properties
of P and T, we find that

(PTf.0) =(Tf, Pe)=(PTe,[)
and thus conclude that PT e = cp with the same constant c. U

Corollary 2.3. Set ¢ = ¢'*; replacing ¢ and 1) with €“/%>¢ and €'/,
respectively, we do not change the rank-one perturbation (-, ) and
reduce ¢ to the case ¢ = 1. Therefore, without loss of generality we can
(and shall) assume that the functions ¢ and 1 are PT -symmetric, i.e.,
that they satisfy the relations PT o = ¢ and PTv = 1.

Next we characterize the spectrum of the operator H; a useful in-
strument for that purpose is the characteristic function F of H defined
for A € p(Hy) via [1, Sec. 1.1.1]

(2.2) F(\) := ((Hy — \) Y, 0) + 1.

Indeed, as explained in loc. cit., if A € p(Hp) is such that F(\) # 0,

then X is in the resolvent set p(H) of H and the resolvent (H — \)~!

satisfies the Krein resolvent formula

(-, (Ho = N)""o)
F(A)

Therefore, the resolvent (H — \)~! is compact whence H has a discrete
spectrum.

Denote by a,, and b, the Fourier coefficients of the vectors ¢ and
with respect to the orthonormal basis of eigenfunctions v,

(23) ¥ = Zanvm Y= anvn

nel nel

(H—=XN)"t=(Hy— )\~ (Ho — \) 1.

Set

In:={nel]|ayb, =0}, I :={nel|ayb, #0}
it was shown in [16] that the intersection o(Hy) N o(H) =: oo(H)
coincides with the set {\, | n € Iy}. Next, using the spectral theorem
for the Hamiltonian Hy, we can write the characteristic function F' of H
in (2.2) as

mbn

(2.4) F() =) Lo T

nel
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then another interesting result proved in [16] is the following relation
between the zeros of F' and the bound states of H.

Proposition 2.4. Zeros of F' coincide with the bound states of H in-
cluding multiplicities, i.e., if X is a zero of F' of multiplicity k > 1, then
A is a bound state of H of algebraic multiplicity k if X & oo(H) and of
algebraic multiplicity k + 1 otherwise.

We recall that algebraic and geometric multiplicity of an eigenvalue
are defined as follows [20]. Assume that A is an isolated point of the
spectrum o(A) of a linear operator A. We form the corresponding
Riesz spectral projector

1
2. Po=— [(A=2)""d

where I is a contour in the resolvent set of A whose interior contains A
but no other points of ¢(A), and call the dimension dimran Py of the
range of Py the algebraic multiplicity of the eigenvalue \. If the alge-
braic multiplicity of \ is finite, then it coincides with the dimension of
the root subspace, i.e., the set of all vectors v for which there is £ € N
such that (A — M\)*v = 0. The geometric multiplicity of the eigen-
value X is the dimension of the nullspace of the operator A — A. An
eigenvalue X is called semi-simple if its algebraic multiplicity coincides
with the geometric one.

Proposition 2.4 gives an effective tool of constructing a rank-one per-
turbation H with the prescribed set of non-real degenerate bound states
through constructing the characteristic function (2.4) with prescribed
zeros of desired multiplicities. Following this path, it was shown in [16]
that, under no P7T-symmetry assumptions, the perturbed Hamilton-
ian H can possess an arbitrary non-real spectrum of arbitrary algebraic
multiplicity. However, PT-symmetry of H imposes some restrictions
on its bound states and their multiplicities, as well as on the functions
 and 1.

Firstly, although a PT-symmetric Hamiltonian H may have non-
real eigenvalues, they necessarily come in complex conjugate pairs: in-
deed, if X is an eigenvalue of H with eigenvector v, then the equality
H(PTwv) = APTwv shows that ) is also an eigenvalue of H with eigen-
vector PTv. Secondly, it follows from the formula (2.5) for the Riesz
projector that the root subspaces H, and Hy of H for the eigenvalues A
and ) satisfy the relation Hy = PTH.,, which shows that the algebraic

multiplicities of A and X coincide. Finally, PT -symmetry of ¢ and v,
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implies that

Zanvn =p=PTyp= Z%vn,

nel nel
so that the Fourier coefficients a,, of ¢ are real; in the same manner we
show that all Fourier coefficients b,, of ¢ are real.

It follows from [16] that the eigenvalues of H can be labelled by p,,

n € I, in such a way that each p, is repeated according to its algebraic
multiplicity and |, —A,| = 0 as |n| — oo. As a result, the eigenvalues
i, of H with sufficiently large |n| are simple and real, so that H may
have at most finitely many non-real eigenvalues. We shall prove in the
following sections that except for these restriction (of finiteness and
symmetry including multiplicities), the non-real spectrum of H can be
arbitrary.

3. NON-REAL EIGENVALUES

We start with the following example that will serve as a motivation
for the more general results.

Example 3.1. Let H be the Hilbert space Lo(—m, ), with the stan-

dard space parity Pf(x) = f(—z) and time reversal T f(x) = f(z).
We consider in ‘H a kinetic Hermitian Hamiltonian Hy = —% subject
to the Neumann boundary conditions y'(—n) = 3/(w) = 0. The spec-
trum of Hy coincides with A\, := n? for n € Z,, and the normalized
eigenfunction for the eigenvalue ), is the constant vo(z) = 1/v/27 if
n =0 and v,(x) := cosnz/y/T if n > 0.

We will construct a rank one perturbation H = Hy + (-, )1 of Hy
which is PT-symmetric and shares with H, all its eigenvalues except
Ao and A;, these being moved to +i. According to [16], ¢ and v can
be taken to be linear combinations of vy and vy, i.e.,

p(r) = aguy + ayv, Y(z) = bovg + brv:.
As we mentioned in Section 2, the rank-one perturbation H is P7T-
symmetric if PT¢ = ¢ and PTvy = ¢; with the above form of ¢ and

1, this is equivalent to having ag, a1, by, and by real.
The characteristic function F' of H in (2.4) reads
agby | a1b

F(z) = — 1
(2) — t7 L

and we need to satisfy two equations,
F(i) = F(—i)=0.
This leads to a linear system of two equations in variables x = agby

and y = @by possessing the unique solution, z = 1 and y = —2. One
7



of the many choices for the Fourier coefficients can be ag = by = 1,
ap = —b = \/5, leading to

B 1+ 2cosx

p(z) = W’

Therefore, the corresponding operator H is

B 1—2cosx

2
H= —% + %(-,1 + 2cosz)(l —2cosx)

with dom(H) = dom(H,). By construction, vy L ¢ for & > 1, so that
each such vy is an eigenfunction of H corresponding to the eigenvalue
wr = k2. A direct verification shows that wy := 1 &4 — 2cos z satisfy
the relations Hwy = 4iw4 and thus are the eigenfunctions for the
eigenvalues +i. As the set of functions {vy }x~1U{w } is a basis of H, we
conclude that H has no other eigenvalues, so that the set {k*},~;U{=£i}
is the spectrum of H as claimed.

More generally, the next theorem shows that any 2n real eigenvalues
of Hy can be moved to any n pairs of (non-real) complex conjugate
points by a PT-symmetric rank one perturbation.

Theorem 3.2. Assume that Hy is a self-adjoint operator in a Hilbert
space H that is also PT -symmetric with respect to certain space par-
ity P and time reversal T. Assume further that Hy has a compact re-
solvent and denote by o(Hy) := {\x }rer the spectrum of Hy. Then for
every n € N, every n pairwise distinct points z1, 2o, ..., 2, in the upper
complex half-plane C., and every set of 2n pairwise distinct eigenvalues
Akys Akgs - - -y Ako, Of Ho there exists a rank-one PT -symmetric pertur-
bation H of Hy whose spectrum is

(O(HO) \ {)\k’] 321) U {Zlaz_la 2272_27 ety Zm%}

Proof. For convenience, we denote by pu; := A, and w; = v, J =
1,...,2n, the chosen eigenvalues and the corresponding eigenvectors of
the operator Hy. Also, set wy, := 2, and wyy, := 2 for k=1,2,... n.

It follows from the considerations of Section 2 that the functions ¢
and ¢ in the rank-one perturbation H of H, can be chosen from the
subspace Hg = ls{wy, wa, ..., wa,}, so that

2n 2n
(31) Y = chwj, Qﬂ = Zdjwj
j=1 j=1
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for some ¢; and d;. We set x; = ¢;d; for 7 = 1,...,2n; then the
characteristic function of H = Hy + (-, ¢)® is equal to

2n
l’ .
F(z):= I +1,
and we look for x; such that F' has 2n zeros wi,ws, ..., wa,. The equal-
ities
F(wl):F(u)g):---:F(wgn):O

form a linear inhomogeneous system of 2n equations for 2n variables
T1,T2y...,Top, VIZ.
I T2 Ton

(3.2) + +ood—=-1, k=1,2,...,2n.
H1 — W 2 — Wi Hon — Wk
The coefficient matrix M of that system has entries
1
Mmyj 1= ———
Hj — Wk
and thus is a non-singular Cauchy matrix [32].
It follows that system (3.2) has a unique solution xy,Zs, ..., Ta,.
Taking now conjugates of each equation in (3.2), we arrive at the system
2n T
> ——_+1=0, k=12....2n
=1 My — W
Since Wy = wii, for k= 1,2,...,n, we see that 1,75, ..., T3, is also

a solution of the linear system (3.2). By uniqueness of solutions, we
conclude that every z; satisfies ; = 7; and thus is real.

The functions ¢ and 1 can be formed e.g. by taking ¢; = co = --- =
con = land dj = z;, j = 1,2,...,2n, in formula (3.1). With such a
choice, the rank-one perturbation H of the operator Hy will be PT-
symmetric. By construction, H coincides with Hj on the orthogonal
complement of Hy; therefore, every eigenvalue Ay of Hy not in the set
1, fho, - - ., [oy 1S also an eigenvalue of H with the same eigenvector vy.
By [1,16], H also possess eigenvalues at the points wy,ws, ..., wa,. As
the eigenvectors of H corresponding to those eigenvalues form a basis
of Hy, we conclude that H has a complete set of eigenfunctions in ‘H
and thus possesses no other eigenvalues. The proof is complete. U

4. NON-SIMPLE EIGENVALUES

Self-adjoint operators in a Hilbert space have (semi-)simple eigenval-

ues in the sense that the corresponding root subspaces coincide with
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the eigenspaces, i.e., that every non-zero root vector is an eigenvec-
tor. For a non-self-adjoint operator H, however, there may exists the
so-called Jordan chains of eigen- and associated vectors wg, wy, ..., w,
for an eigenvalue A, so that Hwy = Awy and Hw; = Aw; + w;_; for
j=1,2,...,n. We start with an example of a rank-one PT-symmetric
perturbation H of a self-adjoint operator Hy such that H has non-semi-
simple non-real eigenvalues.

Example 4.1. We take the same Hilbert space H = Lo(—m,7) and
the P and 7 symmetries as in Example 3.1. Consider the self-adjoint
PT-symmetric momentum operator Hy = %% with periodic boundary
conditions; its spectrum coincides with the set Z, and a normalized
eigenfunction v, corresponding to the eigenvalue )\, := n is equal to
e /)27

We shall construct a PT-symmetric rank-one perturbation H (2.1)
whose spectrum consists of simple eigenvalues k € Z \ {£1,+2} and
eigenvalues 4 each of algebraic multiplicity 2 (i.e., generating Jordan
chains of eigen- and associated vectors of length 2).

According to the results of [16], the functions ¢ and ¢ can be taken

as linear combinations of the vectors v_s, v_;, v; and vy, so that
Y =0a_2U_9+a_1v_1+a1v1+as0s, Y =b_ov_o+b_1v_1+b1v1+bovs.

The characteristic function
T_o T_q T )
F(z)= 1
(2) —2—z+—1—z+1—z+2—z+’
where x;, = apby for k = 1, 42, must obey the following relations:
F(i)=F'(i) = F(—i) = F'(—i) = 0.
The equations F'(+i) = 0 read
T_o T_1 T T2
AT R E T AR CE D
adding them, we conclude that z_5 4+ x5 = 0, and subtracting now the
equation F'(i) = 0 from F'(—i) = 0 results in the relation x_; +z; = 0.
Therefore, we obtain the following system of two equations in x; and ws:

4

z - 1
5332 + 2 s
o502 +z1 =0,
with unique solution zo = —25/12 = —x_5 and 21 = 2/3 = —z_;.

Now we can choose, e.g., the rank-one perturbation corresponding to
a_g=a_1=a; =ay=1and b; = z; for j = —2,—1,1, and 2. As the
10



coefficients a; and b; are real, we conclude that the corresponding rank-
one perturbation H of the self-adjoint operator Hy is P7T-symmetric.

To show that the constructed operator H possesses eigenvalues =i,
both of algebraic multiplicity 2, we note that the 4-dimensional sub-
space Ho := Is{e 2% e~ ¢® ¢%?} is invariant under H. The corre-
sponding matrix representation of the restriction of H onto H, is a
matrix of size 4, whose eigenvalues are precisely 44, both of multi-
plicity 2. Eigenfunction completeness guarantee that H has no other
eigenvalues except +i and the common eigenvalues Z \ {—2, —1,1, 2}.

We can now generalize the above example as follows.

Theorem 4.2. Assume that Hy is a self-adjoint Hamiltonian in a
Hilbert space H that is also PT -symmetric with respect to certain space
parity P and time reversal T. Assume further that Hy has a compact
resolvent and denote by o(Hy) := { A }rer the spectrum of Hy. Then
for every n € N, every non-real zy in the upper complex half-plane C_,
and every set of 2n pairwise distinct eigenvalues Ng,, Mgy, - - -y Ay, 0f Ho
there exists a rank-one PT -symmetric perturbation H of Hy whose
spectrum is

(o(Ho) \ { ), }321) U {20, %0},

and the ergenvalues zy and Zg are of algebraic multiplicity n and possess
chains of eigen- and associated vectors of length n.

Proof. The proof is constructive and similar to that of Theorem 3.2.
For convenience, we denote by p; := A, and w; == vy, j =1,...,2n,
the chosen eigenvalues and the corresponding eigenvectors of the opera-
tor Hy. It follows from the considerations of Section 2 that the functions
¢ and v in the rank-one perturbation H of Hy can be searched for in
the subspace Hg := 1s{wy, wo, ..., wa, }, so that

2n 2n
(41) Y = chwj7 1/} = Zdjwj
j=1 j=1

for some ¢; and d;. We set x; := ¢;d; for 7 = 1,...,2n; then the
characteristic function of H = Hy + (-, ¢)1 is equal to

2n




and we look for z; such that F' has zeros z, and %y, each of multiplic-
ity n. The equalities

F(z) = F'(z) = = FO®(2)
= F(z) = F/(%) =+ = F""(%) = 0
form a linear inhomogeneous system of 2n equations for 2n variables
T1,T,...,To,, Viz.
x x
: 4o =
M1 — 2o Hon — 20
x x
SN TR
49 (111 — 20) (120 — 20)
(4.2) Ty Ton
— + ... =—1,
M1 — Zo Hon — 20
x x
—1—k +$—k :O, k’ZQ,...,TL.
(11 — %) (H2n — Z0)
We prove in Lemma 4.3 below that the coefficient matrix of that system
is non-singular. As a result, there is a unique solution xy, xs, ..., To,.
By taking the complex conjugate of every equation in the above sys-
tem, we get a solution ¥1,7s,...,%2, of the system with 2y, and Z
interchanged. As this merely amount to interchanging first n and the
last n equations, we conclude that T7, 75, ..., T3, is also a solution of
the original system, so that T = x; for each k =1,2,...,2n.

As a result, the numbers x; are real, and we can take ¢, = 1 and
dp = xp for k =1,2,...,2n in formula (4.1). The resulting functions ¢
and 1 lead to a PT-symmetric rank-one perturbation H of Hy of (2.1).
As the characteristic function (2.4) of that operator satisfies the above
system, in view of [16] it has the required eigenvalues of prescribed
multiplicities. Lack of other eigenvalues follows from completeness of
eigenfunctions, and the proof is complete. O

Now we prove the fact that the coefficient matrix of the system (4.2)
is non-singular. We fix pairwise distinct numbers pq, po, ..., f9, and
denote by D(z1, 29, ..., 22,) the Cauchy determinant of the matrix M
with entries

1
mjk:,u > 5, k=1,2,...,2n.
k<)
It is known [32] that
(4.3) D(zy, 22 Zon) = HHj>k(,Uj — ) (25 — zk)

Hj Hk»(/ij — 2)

Lemma 4.3. The coefficient matriz of system (4.2) is non-singular.
12



Proof. We use row linearity of determinants to derive the explicit for-
mula for the determinant of the coefficient matrix in (4.2). On the first
step, we replace rows 2 to n of the matrix M = M; by their differ-
ences with the first row to obtain the matrix M]. The j* row of Mj,
J=2,...,n, has entries
Zj— 21

(e — 21) (i — 25)
As the determinant of the resulting matrix does not change under such
a transformation, we see that

k=1,2,...,2n.

n
D(z1, 22, ..., 220) = Da(21, 22, - - ., 220) H(Z’j — 1),

7j=2
where Do(z1, 22, ..., 22,) is the determinant of the (2n) x (2n) ma-
trix My, whose rows j = 2 to j = n have entries
1
k=1,2,...,2n,

(e — 21) (b — 25)
and the rest rows are the same as in the matrix M;.
On the second step, we subtract the second row of the matrix M,
from its rows j = 3 to j = n; the resulting j*® row then becomes

Zj — %2
(e — 20) (e — 22) (g — 25)”
Therefore,

k=1,2,...,2n.

n
Do(z1, 22, -, 220) = D3(21, 22, - .., 220) H(ZJ — 22),
=3

J

where D3(z1, 22, . . ., 22,) is the determinant of the matrix Mj, which is
Ms with rows 7 = 3 to j = n replaced by the ones with entries
1
k=1,2,...,2n.

(ki — 20) (e — 22) (b — 25)°

Continuing this process, we get a sequence of matrices M,, and their

determinants D,,(z1, 22, ...,29,), m = 2,3,...,n, defined recursively
via

n
(44) Dm_1<21, 29y .- ’ZQTL) = Dm(Zl, 29y« ,ZQn) H (Zj — Zm)
j=m
In particular, D,, is the determinant of the matrix M, whose j* row,
7 =1,2,...,n, has entries

(Mk_zl)_l"'(uk_zj)_17 ]{?:1,2,...7271,
13



and rows n + 1 to 2n are the same as in the matrix M;.

We now repeat the above process for rows n + 1 to 2n of the matrix
M,y := M,: first, we subtract the (n + 1)** row from the rows n + 2
to 2n, then the row n+2 from rows n+ 3 to 2n of the resulting matrix,
and so on. After this procedure, we obtain the matrix Ms,, whose ;"
row, j =n+1,...,2n, has entries

(:U’k - Zn—‘—l)_l(uk - Z7L+2)_1 e (/’Lk - Zn—i-j)_l? k= 17 27 s 72n'

The determinant of M, can be found explicitly using (4.3) and the
recursive relations between D,,_; and D,,; as a result, we find that

Hj>k(:uj — ) H?Znﬂ HZ:l (25 — Zk)

DQ’!L(217 22y .- 7Z2n) -
Hj Hk(ﬂj — )
It remains to observe that the coefficient matrix of interest is the
Mo, with 2y = 29 = -+ = 2z, = 29 and 2Zp11 = Zpio = *++ = Zop = 20;

therefore, its determinant is equal to

_ n2
(Z0 — 20) Hj>k(ﬂj — H)
2n n .

Hj:l |1 — 20[?

As that determinant is non-zero for zg € C,, the proof is complete. [J

D2n<207207"'>ZOaZ_07'Z_U7"'7Z_O) =

5. POSSIBLE NON-REAL SPECTRUM OF H

We now combine the approaches of Sections 3 and 4 to prove the
general result of this paper on non-real spectra of PT-symmetric rank-
one perturbations H of Hy. Take an arbitrary n, then an n-tuple
(mq, ..., my,) of natural numbers, and a set M = {zy,...,2,} C C, of
n pairwise distinct non-real numbers from the upper complex half-
plane. Set N := 2(my + mg + --- + m,), choose any N pairwise
distinct eigenvalues Ag,, Ak, ..., Ak, of Hp, and set Ay := o(Hp) \
{ ks Mgy - ooy Ak -

Theorem 5.1. Under the above assumptions, there is a PT -symmetric
rank-one perturbation H of Hy whose spectrum is

N

o(H) =N UMUM
and the eigenvalues z and Z, k= 1,...,n, are of multiplicity my,.

Proof. The proof is derived by combining the main steps of the proofs
of Theorems 3.2 and 4.2. For convenience, we denote by p; := Ay, and

wj =y, J =1,..., N, the chosen eigenvalues and the corresponding
14



eigenvectors of the operator Hy. The functions ¢ and 1 in the rank-
one perturbation H of Hy can be searched for in the subspace Hy :=
Is{wy, ws, ..., wy}, so that

N N
(51) Y = Z Cjw]‘, 77/} = Zdjwj
j=1 7j=1

for some c¢; and d;. We set x; = ¢jd; for j = 1,..., N; then the
characteristic function of H = Hy + (-, @)1 is equal to

Fz):=Y —2 41,

[ A

and we look for z; such that F' has zeros of multiplicity m; at the

points z, and z for k = 1,...,n. The equalities
(52) F(Zk) == F/(Zk) = F(m"’_l)(zk)
=F(zZ)=F(z)=-=F™Yz)=0
for k =1,2,...,n give an inhomogeneous system of size N in variables
T1,To...,rNn Whose coefficient matrix M has rows of entries
1
S E—— k=1,....n, m=1,...,my,
(pj — wg)™

where w, = 2, and wy = Z; in the top and the bottom halves of the
matrix M, respectively.

Small amendments in the proof of Lemma 4.3 (where z; is consecu-
tively replaced with 21, 29, ..., 2,) shows that the coefficient matrix M
is non-singular, so that the above system in x1, x5, ..., zy has a unique
solution. As taking conjugate of every equation in the system produces
the same system of equations in the variables 71,73, ..., Ty, We con-
clude that all z; are real. Therefore, we can take ¢; = 1 and d; = x;,
j=1,...,N in (5.1); the results of [16] now imply that the points zj
and Z; are eigenvalues of the operator H of multiplicity my, while Ay
is the common part of the spectra of the Hamiltonians Hy and H. The
proof is complete. O

Remark 5.2. As is clear from the proof of the main results, there are
infinitely many P7T -symmetric rank-one perturbations of Hy producing
the desired spectral effect; e.g., in the above proof, the Fourier coeffi-
cients a; and by, of ¢ and v in (2.3) are determined only up to fixing

their product a;by.
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Example 5.3. Take Hy to be the quantum harmonic oscillator (in
dimensionless coordinates)

Hy=—— +2°
0 dz?
in the Hilbert space H = Lo(R). As is well known [37, Ch.8.3], the
bound states of Hy are A, = 2n + 1, n > 0, and the corresponding
normalized eigenfunctions are
g1/4 2
v, () = ane’x/Q,

@)= Frm @)
with H, being the n'® Hermite polynomial. Let also P and T be the
standard space parity and time reversal operators in H.

With the notations fized at the beginning of this section, we set j1; =
27 =1 and w; = vj_1, j =1,...,N. Solving the system of N linear
equations generated by the equalities (5.2), we get real values for the
variables x1, %2, ..., TN, then choose real c; and d; satisfying c;d; = x;,
and, finally, construct the functions ¢ and v via (5.1).

The corresponding rank-one perturbation

d2
H=——+2"+ (-,
72 (-, o)
of Hy is PT -symmetric, has non-real eigenvalues at the points z, and
Zr of multiplicity my, k = 1,2,...,n, and the remaining eigenvalues

and eigenfunctions are pj := 2j+1 and v;, 3 > N, as in the initial Hy.

6. DISCUSSION AND CONCLUSION

The main results of the paper show that, given an arbitrary self-
adjoint PT-symmetric Hamiltonian H, with discrete spectrum, any
finite subset of its eigenvalues can be moved by a PT-symmetric rank-
one perturbation into any desired collection of complex conjugate pairs,
each with any desired degeneracy. It should be noted that, in fact, Hy
need not have purely discrete spectrum and that a continuous spectrum
component may co-exist with bound states. The explicit constructions
suggested in Theorem 5.1 can be accommodated to the spectral sub-
space corresponding to the discrete spectrum.

In this paper, we have not discussed what changes a P7T-symmetric
rank-one perturbation may have on the spectrum of H, globally, for
instance, what are possible asymptotics of the bound state distribution.
This question requires different analytic tools and will be addressed in

a separate research.
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Finally, an interesting observation is that for every P7T-symmetric
Hamiltonian H; with finite non-real spectrum there is a Hermitian
PT-symmetric Hamiltonian H, and its rank-one P7T-symmetric per-
turbation H such that H and H; possess the same spectra counting
with multiplicities. To construct H, explicitly, we denote by N the
total multiplicity of the non-real spectrum of H; and by {\} its real
bound states. We then augment {\;} with arbitrary N real values \},
j=1,2,..., N, denote the union by {x, }, take an orthonormal basis of
‘H consisting of PT-symmetric functions v,, and construct Hy through
the spectral theorem with bound states u, and eigenfunctions v,

Hy = Z,un< © ) Up ) Up.

Then we apply Theorem 5.1 to move the bound states A} to non-real
spectrum of H; by a suitably chosen rank-one P7T-symmetric perturba-
tion resulting in a PT-symmetric Hamiltonian H. Tt is an interesting
open question, if Hy can be chosen so that H coincides with H;.
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