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1. Introduction

The main aim of this paper is to give a complete answer to the question,
what spectra rank-one perturbations B = A + 〈·, ϕ〉ψ of a given self-adjoint
operator A with simple discrete spectrum may have. There are several reasons
why this question is of interest. Firstly, such perturbations lead to the explicit
formulae of perturbation theory and thus many related questions can be fully
answered. Secondly, despite its simplicity, the model offers extremely rich
family of perturbed spectra. Namely, the main results of this paper show
that, apart from the prescribed asymptotic distribution of eigenvalues, the
spectrum of a rank-one perturbation B of A might become arbitrary—in
particular, it may get eigenvalues of arbitrarily prescribed multiplicities in
an arbitrarily prescribed finite set of complex points. In addition, we suggest
an explicit method of constructing rank-one perturbations of A with a given
admissible spectrum.

Similar questions in finite-dimensional case have been studied since
1990-ies. In particular, Krupnik proved in [23] that for any two sequences
λ1, λ2, . . . , λn and μ1, μ2, . . . , μn of complex numbers there exists an n × n
matrix A and its rank-one perturbation B such that λj are eigenvalues of A
and μj those of B, all counted with multiplicities; moreover, that statement
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was then further specified for the classes of Hermitian, unitary, and normal
matrices. Savchenko [35] studied the changes in the Jordan structure of A un-
der a rank-one perturbation and found out that, generically, in each root sub-
space, only the longest Jordan chain splits. For low-rank perturbations, that
result was further generalised in [36] and independently in [33]. In [17], the
number of distinct eigenvalues of a matrix B was estimated in terms of some
spectral characteristics of A and the rank of the perturbation. One should
mention that earlier, Hörmander and Melin [21] explained similar effects of
rank-one perturbations in an infinite-dimensional setting; recently, Behrndt
a.o. [12] discussed possible changes to Jordan structure of an arbitrary linear
operator A in a Banach space under general finite-rank perturbations.

For structured matrices and matrix pencils, a detailed rank-one pertur-
bation theory and its application in the control theory was recently developed
in a series of papers by Mehl a.o. [27–32,38]. The results established therein
include e.g. changes in the Jordan structure of A under perturbation within
classes of matrices enjoying certain real or complex Hamiltonian symmetry
[27,29,31], or for H-Hermitian matrices, with (skew-)Hermitian H, using the
canonical form of the pair (B,H) [28,30]. Rank-one perturbations of matrix
pencils and an important eigenvalue placement problem were studied e.g. in
[11,19,32], while a more general perturbation theory for structured matrices
was outlined in the recent paper [38].

The cited results are mostly essentially finite-dimensional in the sense
that their methods do not allow straightforward generalization to the infinite-
dimensional case (see, however, [12,21]). The latter has been studied within
the general spectral theory for bounded or unbounded operators in infinite-
dimensional Banach or Hilbert spaces [22]. For instance, a comprehensive
spectral analysis of rank-one perturbations of unbounded self-adjoint opera-
tors is carried out in [37], where a detailed characterization of discrete, ab-
solutely continuous, and singularly continuous spectra of the perturbation B
is given. A thorough overview of the theory of Schrödinger operators under
singular point perturbations (formally corresponding to additive Dirac delta-
functions and their derivatives) is given in the monographs by Albeverio a.o.
[2,9], suggesting also comprehensive reference lists. Much attention has been
paid to the so-called singular and super-singular rank-one or finite-rank per-
turbations of self-adjoint operators, where the functions ϕ and ψ belong to the
scales of Hilbert spaces dom(Aα) with negative α, see e.g. [3–8,10,16,18,24–
26]; in this case, a typical approach is through the Krein extension theory of
self-adjoint operators. Rank-one and finite-rank perturbations of self-adjoint
operators in Krein spaces have been recently discussed in e.g. [13,14].

Despite the extensive research in the area, there seems to be no com-
plete understanding what spectra rank-one perturbations of a given operator
A can produce. As the earlier research demonstrates (cf. [2,9,37]), the ques-
tion is quite non-trivial even for self-adjoint perturbations of a self-adjoint
operator A, and thus necessarily much more complicated for generic rank-one
perturbations. In our previous work [15], we described local spectral proper-
ties of rank-one perturbations of a self-adjoint operator with discrete spec-
trum and proved that the eigenvalues of B are asymptotically close to those
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of A at infinity. In particular, it was shown therein that such a perturbation
can possess eigenvalues of arbitrarily prescribed multiplicities at any finite
set of complex numbers thus significantly extending the finite-dimensional
result of [23]. Recently, similar properties were derived in [20] for the class of
PT -symmetric perturbations.

The main aim of the present paper is to suggest a complete character-
ization of possible spectra of rank-one perturbations of a given self-adjoint
operator A with simple discrete spectrum. More exactly, with λn denoting
the eigenvalues of A, Theorem 3.1 states that the eigenvalues of a rank-one
perturbation B can be labelled as μn (counting with multiplicities) so that
the sum of all offsets |μn − λn| is finite. Moreover, Theorem 4.1 proves that
every sequence μn with this property can be a spectrum for such a B and,
in addition, suggests a method for constructing all such rank-one perturba-
tions B; uniqueness of B is discussed in Corollary 5.4.

The structure of the paper is as follows. In the next section, we collect
some basic spectral properties of the rank-one perturbations B and review
the results of [15]. In Sect. 3, the asymptotic distribution of eigenvalues of B
is studied and, in particular, summability of the offsets |μn − λn| is proved.
Sufficiency of this condition, as well as an algorithm for constructing a rank-
one perturbation B with a prescribed admissible spectrum are established in
Sect. 4. Finally, in Sect. 5, we give two examples, comment on uniqueness
of B when φ or ψ is fixed, and discuss straightforward generalisations of the
main results to wider classes of the operators A.

2. Preliminaries

In this section, we collect some properties of the rank-one perturbations
of self-adjoint operators A acting in a fixed separable (infinite-dimensional)
Hilbert space H established in [15] that will be used to prove the main results
of this work.

Throughout the paper, we shall assume that

(A1) the operator A is self-adjoint and has simple discrete spectrum.

The operator A is necessarily unbounded but it may be bounded below or
above; without loss of generality, in this case we assume that A is bounded
below (otherwise, we just replace A with −A). Under these assumptions,
the spectrum of A consists of simple real eigenvalues that can be listed in
increasing order as λn, n ∈ I, with I = N if A is bounded below and I = Z

otherwise. Keeping in mind the most important and interesting applications
to the differential operators, we make an additional assumption that

(A2) the eigenvalues of A are d-separated, i.e.,

inf
n∈I

|λn+1 − λn| =: d > 0. (2.1)

Next, the operator B is a rank-one perturbation of the operator A, i.e.,

B = A + 〈·, ϕ〉ψ (2.2)
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with fixed non-zero vectors ϕ and ψ in H and with 〈 · , · 〉 denoting the scalar
product in H. Clearly, B is well defined and closed on its natural domain
dom(B) equal to dom(A). Further, for λ ∈ ρ(A), we introduce the character-
istic function

F (λ) := 〈(A − λ)−1ψ,ϕ〉 + 1. (2.3)

This function appears in the Krein resolvent formula for B [9,15], and its
zeros characterise the spectrum of B.

To be more specific, we denote by vn a normalised eigenvector of A cor-
responding to the eigenvalue λn; then the set {vn}n∈I forms an orthonormal
basis of H, and we let an and bn be the corresponding Fourier coefficients of
the vectors ϕ and ψ, so that

ϕ =
∑

k∈I

akvk, ψ =
∑

k∈I

bkvk. (2.4)

Now we set

I0 := {n ∈ I | anbn = 0}, I1 := {n ∈ I | anbn �= 0}
and σj(A) := {λn | n ∈ Ij}; then σ0(A) = σ0(B) := σ(A) ∩ σ(B) is the
common part of the spectra of A and B, while the spectrum of B in C\σ0(A)
coincides with the set of zeros of F .

In fact, the function F also characterises eigenvalue multiplicities of the
operator B. We recall that the geometric multiplicity of an eigenvalue λ of B
is the dimension of the null-space of the operator B − λ, while its algebraic
multiplicity is the dimension of the corresponding root subspace, i.e., of the
set of all y ∈ dom(B) such that (B − λ)ky = 0 for some k ∈ N. Next, by the
spectral theorem for A, the characteristic function F of (2.3) can be written
as 1

F (z) =
∑

k∈I1

akbk

λk − z
+ 1 (2.5)

and thus can be analytically extended to σ0(A); we keep the notation F for
this extension.

As proved in [15], the geometric multiplicity of every eigenvalue μ of B
is at most 2; multiplicity 2 is only possible when μ ∈ σ0(A) (i.e., when μ = λn

for some n ∈ I0) and, in addition, an = bn = F (λn) = 0. We also observe
that when an = bn = 0, then the subspace ls{vn} is invariant under both B
and B∗ and thus is reducing for B. Denoting by H0 the closed linear span of
all such subspaces, we conclude that H0 and H � H0 are reducing for B and
the operators A and B coincide on H0. For that reason, only the part of B
in H � H0 is of interest, and, without loss of generality, we may assume that
H0 = {0}.

Under such an assumption, every eigenvalue μ of B is geometrically
simple and the main results of [15] can be summarised as follows:

1In what follows, the summations and products over the index sets that are not bounded
from below or above are understood in the principal value sense
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(a) the algebraic multiplicity m of an eigenvalue μ ∈ σ(B)\σ0(B) coincides
with the multiplicity l of z = μ as a zero of F ;

(b) if μ ∈ σ0(B), then the above multiplicities m and l satisfy the rela-
tion m = l + 1;

(c) for any n-tuple z1, z2, . . . , zn of pairwise distinct complex numbers and
any n-tuple m1,m2, . . . ,mn of natural numbers, there exists a rank-one
perturbation B of A such that every zj is an eigenvalue of B of algebraic
multiplicity mj ;

(d) the eigenvalues of B can be enumerated as μn, n ∈ I, in such a way that
μn − λn → 0 as |n| → ∞; in particular, B has at most finitely many
non-simple eigenvalues.

Property (c) implies that locally the spectrum of B can be arbitrary while
(d) describes the asymptotic behaviour of the eigenvalues of B at infinity.
The main purpose of this research is to give a complete characterisation
of the possible spectra of A under rank-one perturbations by refining the
asymptotics of μn, cf. Theorems 3.1 and 4.1. By virtue of (a) and (b), this
task amounts to the study of zero distribution of the characteristic function F
of (2.3), which will be carried out in Sects. 3 and 4.

3. Eigenvalue Distribution of the Operator B

In this section, we shall discuss eigenvalue distribution of the rank-one per-
turbation B of A given by (2.2). As explained in the previous section, the
spectrum of B consists of two parts: σ0(B) = σ(A) ∩ σ(B), which is the
common part of the spectra of A and B, and σ1(B) := σ(B) \ σ0(B), which
is the set of zeros of the characteristic function

F (z) =
∑

n∈I1

anbn

λn − z
+ 1

in the domain C \ σ1(A); moreover, the algebraic multiplicity of an eigen-
value μ ∈ σ(B) is determined by its multiplicity as a zero of the characteristic
function F .

The main result of this section is given by the following theorem.

Theorem 3.1. The eigenvalues of the operator B can be labelled as μn, n ∈ I,
in such a way that the series

∑

n∈I

|μn − λn| (3.1)

converges. In particular, all but finitely many eigenvalues of B are simple.

First we shall show that large enough elements of σ1(B) are located
near σ1(A), which will enable their proper enumeration. To begin with, for
k ∈ I1 we define the functions Gk and Hk by the formulas2

Gk(z) =
akbk

λk − z
+ 1, Hk(z) =

∑(1)

|n|≤k

anbn

λn − z
+ 1

2Throughout the paper, the symbol
∑(1) will denote summation over the index set I1
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and introduce the sets
Qk:={z ∈ C | Re(z), Im(z) ∈ (λ−|k| − d

2 , λ|k| + d
2 )},

Rk:={z ∈ C | |z − λk| < d
2},

(3.2)

where we replace λ−|k| with −λ|k| if I = N. Due to the assumption (A2) the
sets Rk are pairwise disjoint and also Rk ∩ Qn = ∅ if |k| > |n|.

Lemma 3.2. For every ε > 0 there exist integers Kε > 0 and K ′
ε > Kε such

that the following holds:
(a) for every k with |k| > Kε and every z ∈ Rk = ∂Rk ∪ Rk

∑(1)

|n|>Kε

n�=k

∣∣∣∣
anbn

λn − z

∣∣∣∣ <
2ε

d
; (3.3)

(b) for every z ∈ C \ QK′
ε

∑(1)

|n|≤Kε

∣∣∣∣
anbn

λn − z

∣∣∣∣ < ε. (3.4)

Proof. The sequences (an)n∈I and (bn)n∈I of the Fourier coefficients of the
vectors ϕ and ψ are square summable, so that, by the Cauchy–Bunyakowsky–
Schwarz inequality,

∑

n∈I1

|anbn| < ∞.

Therefore, for every ε > 0 there exists a Kε such that
∑(1)

|n|>Kε

|anbn| < ε.

Take a k satisfying |k| > Kε; then by virtue of Assumption (A2) for every
z ∈ Rk and every n �= k we get |λn − z| ≥ d

2 , and therefore (3.3) holds.
For part (b), note that |λn −z| > (K ′

ε −Kε)d if |n| ≤ Kε and z ∈ C\Qk

with |k| ≥ K ′
ε > Kε; therefore, by choosing K ′

ε large enough, we arrive
at (3.4). �

Corollary 3.3. Take ε := d/(2 + d) and K ′
ε as in the above lemma; then

σ(B) ⊂ QK′
ε
∪

(⋃
n∈I

Rn

)
.

Indeed, it suffices to note that if z is outside QK′
ε

and every Rn, n ∈ I,
then |λn − z| ≥ d/2, so that

∑(1)

|n|>Kε

∣∣∣∣
anbn

λn − z

∣∣∣∣ <
2ε

d
,

which together with part (b) of that lemma shows that

|F (z)| ≥ 1 −
∑(1)

|n|≤Kε

∣∣∣∣
anbn

λn − z

∣∣∣∣ −
∑(1)

|n|>Kε

∣∣∣∣
anbn

λn − z

∣∣∣∣ > 1 − ε(1 + 2/d) = 0.
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Lemma 3.4. There exists a K > 0 such that for all k ∈ I1 with |k| > K the
following holds:
(a) the function F has exactly one zero in Rk;
(b) the functions Hk and F have the same number of zeros in Qk.

Proof. Fix an ε ∈ (0, d/2) such that

ε
(
1 +

4
d

)
< 1;

we shall show that (a) and (b) hold for K = K ′
ε of Lemma 3.2.

If k satisfies |k| > K, then by Lemma 3.2 for every z ∈ ∂Rk we get

|F (z) − Gk(z)| ≤
∑(1)

|n|≤Kε

∣∣∣∣
anbn

λn − z

∣∣∣∣ +
∑(1)

|n|>Kε

n�=k

∣∣∣∣
anbn

λn − z

∣∣∣∣ < ε +
2ε

d
.

On the other hand, |akbk| < ε if k ∈ I1 satisfies |k| > K > Kε, and then

|Gk(z)| ≥ 1 −
∣∣∣∣

akbk

z − λk

∣∣∣∣ > 1 − 2ε

d

for all z ∈ ∂Rk. By the choice of ε we conclude that then

|Gk(z)| > |F (z) − Gk(z)| (3.5)

for all such z. As the functions Gk and F both have the same number of
poles in Rk (namely, a simple pole at λk), by estimate (3.5) and Rouché’s
theorem they have the same number of zeros in the set Rk. By virtue of the
inequality |akbk| < ε < d/2, the unique zero z = λk + akbk of the function
Gk belongs to the circle Rk for all k ∈ I1 with |k| > K, and thus the function
F has exactly one zero in Rk for such k as well. This completes the proof of
part (a).

Next, by the definition of the set Qk, it holds that |λn − z| ≥ d
2 if

z ∈ ∂Qk and |n| > |k|. By the choice of the number Kε, we find that

|F (z) − Hk(z)| ≤
∑(1)

|n|>|k|

∣∣∣∣
anbn

λn − z

∣∣∣∣ <
2ε

d

and
∑(1)

Kε<|n|≤|k|

∣∣∣∣
anbn

λn − z

∣∣∣∣ <
2ε

d
(3.6)

if |k| > Kε and z ∈ ∂Qk. Also, by part (b) of Lemma 3.2 we have
∑(1)

|n|≤Kε

∣∣∣∣
anbn

λn − z

∣∣∣∣ < ε (3.7)

as soon as |k| > K and z ∈ ∂Qk. Combining estimates (3.6) and (3.7), we
conclude that

|Hk(z)| ≥ 1 −
∑(1)

|n|≤k

∣∣∣∣
anbn

λn − z

∣∣∣∣ > 1 − ε − 2ε

d
(3.8)

for all k with |k| > K and all z ∈ ∂Qk.
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It follows that for k with |k| > K and for all z ∈ ∂Qk

|Hk(z)| > |F (z) − Hk(z)|.
Since the functions Hk and F have the same poles in Qk (namely, simple
poles λn for n ∈ I1 with |n| ≤ |k|), we conclude by Rouché’s theorem that
they have the same number of zeros in Qk if |k| > K. �

Remark 3.5. Take k larger than K of the above lemma and denote by Nk

the cardinality of the set σ1(A) ∩ Qk. The function Hk is a ratio of two
polynomials of degree Nk and due to (3.8) all its zeros are in Qk. Therefore,
the function F has precisely Nk zeros in Qk counting with multiplicities.

Corollary 3.6. The zeros of F in C \ σ0(A) can be labelled (counting with
multiplicities) as μk with k ∈ I1 in such a way that |μk − λk| < d

2 for all
k ∈ I1 with |k| > K.

Recalling the results of the previous section on relation between the
eigenvalues of B and zeros of the function F in C \ σ1(A), we arrive at the
following conclusion.

Corollary 3.7. Eigenvalues of the operator B can be labelled (counting with
multiplicities) as μk with k ∈ I in such a way that |μk − λk| < d

2 when
|k| > K, K being the constant of Lemma 3.4.

Combining the above corollary with Lemma 4.3 of [15], we conclude
that |μk −λk| → 0 as |k| goes to infinity, cf. Theorem 4.7(ii) of [15]. However,
the estimates established above will enable us to prove a stronger statement
of Theorem 3.1 on the asymptotics of |μk − λk|.

Proof of Theorem 3.1. We fix an enumeration of μk as in Corollary 3.7. Then
μk = λk for all k ∈ I0 with large enough |k|, whence it suffices to prove that
the series

∑

n∈I1

|μn − λn|

is convergent.
We take ε and K as in Lemma 3.4; then, according to Corollary 3.7, for

every k ∈ I1 with |k| > K the eigenvalue μk ∈ Rk is a zero of F , so that

F (μk) =
∑(1)

|n|≤Kε

anbn

μk − λn
+

∑(1)

|n|>Kε

n�=k

anbn

μk − λn
+

akbk

μk − λk
+ 1 = 0

and ∣∣∣∣
akbk

μk − λk

∣∣∣∣ > 1 −
∑(1)

|n|≤Kε

∣∣∣∣
anbn

λn − μk

∣∣∣∣ −
∑(1)

|n|>Kε

n�=k

∣∣∣∣
anbn

λn − μk

∣∣∣∣ .

By virtue of Lemma 3.4 we conclude that
∣∣∣∣

akbk

μk − λk

∣∣∣∣ > 1 − ε − 2ε

d
;
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as 1 − ε − 2ε
d > 2ε

d , we find that

|μk − λk| <
d

2ε
|akbk| (3.9)

for all k ∈ I1 with |k| > K. Since the series
∑

n∈I1
|anbn| is convergent, the

same is true of the series
∑

n∈I1
|μn − λn|. �

4. Inverse Spectral Problem

The purpose of this section is to study the inverse spectral problem, namely,
the problem of reconstructing the operator B from its spectrum (μn)n∈I

assuming that the operator A is known.
More generally, let the operator A satisfy assumptions (A1) and (A2),

i.e., is self-adjoint and has a simple discrete spectrum (λn)n∈I that is d-
separated as in (2.1). Our aim is to find necessary and sufficient conditions
that another sequence (νn)n∈I of complex numbers must satisfy so that it
could be a spectrum (counting with multiplicities) of an operator B of the
form (2.2). Also, we want to suggest an algorithm of constructing the oper-
ator B (i.e., the function ϕ and ψ) and investigate the uniqueness of such ϕ
and ψ.

The latter question can be answered straight ahead. Indeed, if the in-
verse problem for a sequence (νn)n∈I has a solution, then it has many solu-
tions. In fact, if

Bj = A + 〈·, ϕj〉ψj , j = 1, 2,

and vectors ϕ1, ϕ2, ψ1, ψ2 satisfy

〈ϕ1, vn〉〈ψ1, vn〉 = 〈ϕ2, vn〉〈ψ2, vn〉, n ∈ I,

then the spectra of B1 and B2 coincide counting with multiplicities. There-
fore, in the inverse problem one can only restore the products anbn of the
Fourier coefficients of the functions ϕ and ψ, which are the residues of the
function −F of (2.5).

The main result of this section is given by the following theorem.

Theorem 4.1. Assume that a sequence ν of complex numbers can be enumer-
ated as νn, n ∈ I, in such a way that the series

∑

n∈I

|νn − λn| (4.1)

converges. Then there exist vectors ϕ,ψ ∈ H such that the spectrum of B
coincides with ν counting with multiplicities.

Let us denote by I0 the set of indices n ∈ I for which λn appears in ν
and set Λ0 := {λn | n ∈ I0}. Convergence of the series (4.1) implies that for
every ε ∈ (0, d/2) there exists a K > 0 such that |νn − λn| < ε for all n ∈ I
with |n| > K. Therefore, if n ∈ I0 and |n| > K, then νn = λn, and without
loss of generality we may assume that νn = λn for all n ∈ I0.
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We also set I1 := I \I0, Λ1 := {λn | n ∈ I1}, and introduce the function

F̃ (z) :=
∏

n∈I1

νn − z

λn − z
. (4.2)

To show that F̃ is well defined, we take an arbitrary ε ∈ (0, d/2) and set

Rn(ε) := {z ∈ C | |z − λn| < ε}, R(ε) := C \
(
∪n∈I1Rn(ε)

)
.

Then we have the following

Lemma 4.2. For each ε ∈ (0, d/2), the product in (4.2) converges uniformly
in R(ε).

Proof. It is enough to show that the series

∑

n∈I1

log
(

1 +
∣∣∣∣
νn − λn

λn − z

∣∣∣∣

)

converges uniformly on the set R(ε). However, for z ∈ R(ε) and n ∈ I1 we
get the estimate

log
(

1 +
∣∣∣∣
νn − λn

λn − z

∣∣∣∣

)
≤

∣∣∣∣
νn − λn

λn − z

∣∣∣∣ ≤ |νn − λn|
ε

, (4.3)

which in view of the convergence of the series (4.1) and the Weierstrass M-test
finishes the proof. �

The Weierstrass M -test used in the above proof also justifies passage to
the limit

lim
u→+∞

∑

n∈I1

∣∣∣∣
νn − λn

λn − iu

∣∣∣∣ = 0;

as a result, we get

Corollary 4.3. There exists the limit

lim
u→+∞ F̃ (iu) = 1.

The function F̃ is meromorphic in C, and its residue at the point λn ∈ Λ1

is

− cn = lim
z→λn

(z − λn)F̃ (z) = (λn − νn)
∏

m∈I1
m �=n

νm − λn

λm − λn
. (4.4)

Lemma 4.4. The series
∑

n∈I1

|cn| (4.5)

converges.
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Proof. In view of (4.4), convergence of series (4.5) follows from convergence
of the series

∑

n∈I1

|λn − νn|
∏

m∈I1
m �=n

∣∣∣∣
νm − λn

λm − λn

∣∣∣∣ ,

and to establish the latter it is enough to show that the sequence
∏

m∈I1
m �=n

∣∣∣∣
νm − λn

λm − λn

∣∣∣∣ (4.6)

is bounded in n ∈ I1.
Applying the same reasoning as in the proof of Lemma 4.2, we conclude

that the sum of the series
∑(1)

m �=n

log
∣∣∣∣
νm − λn

λm − λn

∣∣∣∣ ≤
∑(1)

m �=n

log
(

1 +
∣∣∣∣
νm − λm

λm − λn

∣∣∣∣

)

≤
∑(1)

m �=n

∣∣∣∣
νm − λm

λm − λn

∣∣∣∣ ≤ 1
d

∑

m∈I1

|νm − λm|

has an n-independent bound, which implies that the sequence (4.6) is uni-
formly bounded. �

In view of the above lemma, the series
∑

n∈I1

cn

λn − z

converges uniformly in R(ε) for every ε ∈ (0, d/2). It follows that the function

F (z) := 1 +
∑

n∈I1

cn

λn − z

is well defined and analytic in the set C \ Λ1 and has simple poles at the
points z ∈ Λ1. The Lebesgue dominated convergence theorem also implies
that

lim
u→+∞ F (iu) = 1.

Lemma 4.5. The function F − F̃ is equal to zero identically in C.

Proof. We set G := F − F̃ ; then the function G is meromorphic in C with
possible single poles at the points Λ1. However, as the residua of F and F̃ at
each point z ∈ Λ1 coincide by construction, we conclude that the function G
has removable singularities at the points z ∈ Λ1 and thus is entire. We next
show that G is uniformly bounded over C and thus is constant by the Liouville
theorem; as

lim
u→+∞ G(iu) = lim

u→+∞ F (iu) − lim
u→+∞ F̃ (iu) = 0,

this constant is zero, and thus the proof will be complete.
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For k with large enough |k|, we take the square Qk of (3.2) and observe
that for every n ∈ I1 and z ∈ ∂Qk we have |z − λn| ≥ d/2; as a result, we
conclude that

sup
z∈∂Qk

|F (z)| ≤ 1 +
2
d

∑

n∈I1

|cn| := C.

Next, we note that for ε ∈ (0, d/2) the boundary ∂Qk of Qk lies in the
set R(ε). As in the proof of Lemma 4.2, we can derive the bound (cf. (4.3))

sup
z∈∂Qk

|F̃ (z)| ≤ exp
{1

ε

∑

n∈I1

|νn − λn|
}

:= C̃.

Since the function G is entire, it follows from the maximum modulus principle
that

|G(z)| ≤ C + C̃

inside every set Qk and thus for all z ∈ C. Therefore, the function G is
bounded; as explained at the beginning of the proof, this implies the required
result. �
Proof of Theorem 4.1. Given any sequence ν of complex numbers satisfying
the assumption of the theorem, we construct the meromorphic function F̃
via (4.2). Next, we calculate the residua −cn of F̃ at the points λn ∈ Λ1

via (4.4) and define sequences (an)n∈I and (bn)n∈I via

an :=
√

|cn|, bn :=
√

|cn|ei arg cn , n ∈ I1, (4.7)

and

an := 1/(1 + |n|), bn = 0, n ∈ I0. (4.8)

Since the sequence (cn)n∈I1 is summable by Lemma 4.4, it follows that
the sequences (an)n∈I and (bn)n∈I belong to �2(I). Therefore, there exist
functions ϕ and ψ in the Hilbert space H whose Fourier coefficients in the
basis (vn)n∈I are equal to an and bn, respectively.

We now consider the operator B of the form (2.2) with the functions
ϕ and ψ just introduced and conclude by virtue of Lemma 4.5 that the
corresponding characteristic function F of (2.5) coincides with F̃ . Therefore,
zeros of F are precisely the elements of the subsequence ν1 := (νn)n∈I1 , both
counting multiplicity; namely, if a number ν occurs k times in ν1, it is a zero
of F of multiplicity k. The analysis of the paper [15] summarised in Sect. 2
shows that each element ν of ν is an eigenvalue of B and its multiplicity is
equal to the number of times ν is repeated in the sequence ν. �

The above proof also suggests an algorithm of constructing a particular
operator B whose spectrum corresponds to a sequence ν of complex numbers
satisfying (4.1). Namely, given such a sequence ν, we
(1) construct the product F̃ of (4.2);
(2) then calculate the residua −cn of F̃ at the points λn;
(3) construct sequences (an)n∈I and (bn)n∈I via (4.7) and (4.8);
(4) determine the functions ϕ and ψ from their Fourier coefficients an and

bn via (2.4).
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As was noted at the beginning of this section, there are infinitely many such
operators; all of them are fixed by the condition anbn = cn on the Fourier
coefficient an and bn of the functions ϕ and ψ.

5. Examples and Discussion

We give here two examples illustrating that the results of the paper are in
a sense optimal. For simplicity, we take the unperturbed operator A to be
defined in the Hilbert space L2(0, 2π) via

A =
1
i

d

dx

subject to the periodic boundary condition y(0) = y(2π). The spectrum of
A coincides with the set Z, and a normalised eigenfunction vn corresponding
to the eigenvalue λn := n is equal to einx/

√
2π. Therefore, the characteristic

function of a generic rank-one perturbation B of (2.2) has the form

F (z) =
∑

n∈Z

cn

n − z
+ 1,

where cn := anbn is determined via the Fourier coefficients an and bn of the
functions ϕ and ψ.

Example 5.1. Our first example shows that convergence of the series (3.1) is
not guaranteed if the functions ϕ and ψ do not belong to L2(0, 2π). Namely,
we take an = a−n = bn = −b−n = n−1/2 for n ∈ N and a0 = b0 = 0;
thus cn = n−1 for n �= 0. To study the asymptotics of the corresponding
eigenvalues μn of the operator B, we recall the equality [1, Ch. 5.2]

∑

n∈Z

n�=0

1
n(n − z)

=
1
z2

− π

z
cot πz;

thus

F (z) =
∑

n∈Z

n�=0

1
n(n − z)

+ 1 =
z2 + 1

z2
− π

z
cot πz.

It follows that μn are zeros of the equation

tan πz =
πz

z2 + 1

and thus μn = λn + εn with εn → 0 as |n| → ∞; the relation

μn

εn(μ2
n + 1)

=
tan πεn

πεn
→ 1

as |n| → ∞ now implies that εnμn → 1, and thus εn = n−1(1 + o(1)) as
|n| → ∞. As a result, the series (3.1) diverges.
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Example 5.2. Consider the rank-one perturbation B of A as in (2.2) with ϕ
and ψ given by their Fourier coefficients a0 = b0 = 0 and an = a−n = n−β/2

and bn = b−n = n−β/2 for n ∈ N, with β > 1. We observe that the functions
ϕ and ψ can be found explicitly via the fractional derivatives, cf. [39]. The
corresponding characteristic function F is equal to

F (z) = 1 +
∑

n�=0

|n|−β

n − z
,

and can be also represented as a product

F (z) =
∏

n∈Z

n�=0

μn − z

n − z
.

The proof of Theorem 3.1 (see (3.9)) shows that μn − n = O(|n|−β) as
|n| → ∞. The residue of F at the point z = n is equal to −|n|−β ; on the
other hand, it can be calculated as (cf. (4.4))

res
z=n

F (z) = (n − μn)
∏

m∈Z

m �=n

μm − n

m − n
.

The infinite products in the above formula have been shown in the proof of
Lemma 4.4 to be uniformly bounded in n (cf. the reasoning following formula
(4.6)). Therefore, we conclude that

|n|−β ≤ C|μn − n|,

for a constant C independent of n, so that

|μn − n| � |n|−β .

Remark 5.3. The same arguments lead to conclusion that, for a generic rank-
one perturbation, |μn − λn| � |anbn| as |n| → ∞. This allows us to control
the decay of the offsets |μn − λn| through the products |anbn| of the Fourier
coefficients of ϕ and ψ and vice versa.

Fix an arbitrary function ϕ ∈ H and let an be its Fourier coefficients
in the orthonormal basis (vn)n∈I of the eigenfunctions vn of A. Denote by
�1(ϕ) the subspace of �1(I) consisting of all sequences c = (cn)n∈I of the form
cn = xnan with (xn)n∈I ∈ �2(I). The above analysis leads to the following
uniqueness result:

Corollary 5.4. Given ϕ ∈ H, for every sequence ε = (εn)n∈I ∈ �1(ϕ) there
exists a function ψ ∈ H such that the rank-one perturbation B of the oper-
ator A given by (2.2) has eigenvalues μn := λn + εn, n ∈ I, counting with
multiplicities.

Such ψ is unique if and only if none of an vanishes; each n ∈ I such
that an = 0 leaves the corresponding Fourier coefficient bn undetermined and
thus increases by one the degree of freedom of the set of all such ψ.

The roles of ϕ and ψ can be interchanged.
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We conclude the paper with some comments on the results obtained.
Most of the analysis of [15] and of this paper can be generalised in a straight-
forward way to the case of a normal operator A. The most crucial properties
and facts used are

(a) the spectrum of A is simple and separated;
(b) the eigenvectors form an orthonormal basis (or even a Riesz basis) of H;
(c) the spectral theorem allowing to represent the characteristic function F

of a rank-one perturbation B in the form (2.5).

Some care should be given to properly choose the regions Qk in Sects. 3
and 4, but otherwise the arguments remain valid and establish Theorems 3.1
and 4.1, i.e., justify the possibility to enumerate the spectrum of B so that
series (3.1) converges and, for every sequence (νn)n∈I satisfying (4.1), to
construct a rank-one perturbation B of A whose spectrum is given by that
sequence counting with multiplicities.

In the special case of a self-adjoint rank-one perturbation (2.2) with
ψ = αϕ and α ∈ R, the resulting spectrum of B is simple outside σ0(A),
of geometric multiplicity at most 2 at the points of σ0(A), and the eigen-
values σ1(A) and σ1(B) strictly interlace, i.e., between every two consecu-
tive eigenvalues from σ1(A) there is a unique eigenvalue from σ1(B) and,
vice versa, between every two consecutive eigenvalues from σ1(B) there is
a unique eigenvalue from σ1(A). This interlacing property follows from the
minmax principle [34]; moreover, for α > 0 we have λn < μn for all n ∈ I1;
the signs are reversed if α < 0. Given (μn)n∈I satisfying the interlacing prop-
erty, convergence of the series (3.1) is a necessary and sufficient condition on
the spectrum of a self-adjoint rank-one perturbation B of A.

Open Access. This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and re-
production in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party ma-
terial in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

[1] Ahlfors, L.V.: Complex Analysis. An Introduction to the Theory of Analytic
Functions of One Complex Variable, 3rd edn. McGraw-Hill Book Co., New
York (1978)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


   18 Page 16 of 18 O. Dobosevych, R. Hryniv IEOT

[2] Albeverio, S., Gesztesy, F., Høegh-Krohn, R., Holden, H.: Solvable Models
in Quantum Mechanics. With an Appendix by Pavel Exner, 2nd edn. AMS
Chelsea Publishing, Providence, RI (2005)

[3] Albeverio, S., Konstantinov, A., Koshmanenko, V.: Decompositions of singular
continuous spectra of H−2-class rank one perturbations. Integral Equ. Oper.
Theory 52(4), 455–464 (2005)

[4] Albeverio, S., Koshmanenko, V., Kurasov, P., Nizhnik, L.: On approximations
of rank one H−2-perturbations. Proc. Am. Math. Soc. 131(5), 1443–1452 (2003)

[5] Albeverio, S., Koshmanenko, V.: Singular rank one perturbations of self-adjoint
operators and Krein theory of self-adjoint extensions. Potential Anal. 11, 279–
287 (1999)

[6] Albeverio, S., Kurasov, P.: Rank one perturbations, approximations and self-
adjoint extensions. J. Funct. Anal. 148, 152–169 (1997)

[7] Albeverio, S., Kurasov, P.: Rank one perturbations of not semibounded oper-
ators. Integral Equ. Oper. Theory 27, 379–400 (1997)

[8] Albeverio, S., Kurasov, P.: Finite rank perturbations and distribution theory.
Proc. Am. Math. Soc. 127, 1151–1161 (1999)

[9] Albeverio, S., Kurasov, P.: Singular Perturbations of Differential Operators:
Schrödinger-Type Operators. Cambridge University Press, Cambridge (2000)

[10] Albeverio, S., Kuzhel, S., Nizhnik, L.: On the perturbation theory of self-adjoint
operators. Tokyo J. Math. 31(2), 273–292 (2008)

[11] Baragaña, I., Roca, A.: Fixed rank perturbations of regular matrix pencils.
Linear Algebra Appl. 589, 201–221 (2020)

[12] Behrndt, J., Leben, L., Peria, F.M., Möws, R., Trunk, C.: The effect of finite
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